Refine Your Search

Topic

Search Results

Technical Paper

Longitudinal Velocity Estimation of Electric Vehicle with 4 In-wheel Motors

2008-04-14
2008-01-0605
This paper describes a methodology to estimate longitudinal velocity of a 4-wheel-drive electric vehicle, in which wheel driven torque can be independently controlled by electric motor. Without non-driven wheels it would be difficult to estimate the vehicle longitudinal velocity precisely, especially when all of four wheels have large slip ratio. Therefore, an estimation methodology based on fuzzy logic is put forward, which uses four wheel speed and longitudinal acceleration as input signals. However, this method works not very well when two or more wheels have large slip ratio. In order to improve estimation effect, a state variable filter is designed to calculate wheel acceleration signals, which are used as additional signals to the fuzzy logic observer. Furthermore, the possibility of using four wheel driving torque signals to improve the estimation precision is also discussed.
Technical Paper

Vibration Characteristic Analysis and Optimization of the Rear Suspension of Eccentrical Motor Driven Electric Vehicle

2013-03-25
2013-01-0088
To wheel driven electric vehicle, besides road unevenness excitation, the electric motor torque fluctuation has great effects on the whole body vibration (WBV) according to prior research.[1],[2] To evaluate and further reduce the influence of torque fluctuation on the whole body vibration (WBV), vibration characteristic of rear suspension is analyzed thoroughly and finally optimized in this paper. Firstly, based on an existing eccentrical motor driven electric vehicle, a rear twist beam suspension suitable for high frequency analysis is modeled in Adams/View. Secondly, the vibration characteristic is simulated using Adams/Vibration module and verified with natural modal parameters of system. Finally, the vibration characteristic is optimized by adjusting the parameters of bushings using DOE method and proven to be effective to reduce WBV caused by torque fluctuation.
Technical Paper

Instantaneous Optimization Energy Management for Extended-Range Electric Vehicle Based on Minimum Loss Power Algorithm

2013-09-08
2013-24-0073
Most of the existing energy management strategies for Extended-Range Electric Vehicles (E-REVs) are heuristic, which restricts coordination between the battery and the Range Extender. This paper presents an instantaneous optimization energy management strategy based on the Minimum Loss Power Algorithm (MLPA) for a fuel cell E-REV. An instantaneous loss power function of power train system is constructed by considering the charge and discharge efficiency of the battery, together with the working efficiency of the fuel cell Range Extender. The battery working mode and operating points of the fuel cell Range Extender are decided by an instantaneous optimization module (an artificial neural network) that aims to minimize the loss power function at each time step.
Technical Paper

Improvement on Energy Efficiency of the Spark Ignition System

2017-03-28
2017-01-0678
Future clean combustion engines tend to increase the cylinder charge to achieve better fuel economy and lower exhaust emissions. The increase of the cylinder charge is often associated with either excessive air admission or exhaust gas recirculation, which leads to unfavorable ignition conditions at the ignition point. Advanced ignition methods and systems have progressed rapidly in recent years in order to suffice the current and future engine development, and a simple increase of energy of the inductive ignition system does not often provide the desired results from a cost-benefit point of view. Proper design of the ignition system circuit is required to achieve certain spark performances.
Technical Paper

Boosted Current Spark Strategy for Lean Burn Spark Ignition Engines

2018-04-03
2018-01-1133
Spark ignition systems with the capability of providing spark event with either higher current level or longer discharge duration has been developed in recent years to help IC engines towards clean combustion with higher efficiency under lean/diluted intake charge. In this research, a boosted current spark strategy was proposed to investigate the effect of spark discharge current level and discharge duration on the combustion process. Firstly, the discharge characteristics of a boosted current spark system were tested with a traditional spark plug under crossflow conditions, and results showed that the spark channel was more stable, and was stretched much longer when the discharge current was boosted. Then the boosted current strategy was used in a spark ignition engine operating under lean conditions. Boosted current was added to the spark channel with different timing, duration, and current levels.
Technical Paper

Experimental and Numerical Study on Combustion Characteristics of Hydrogen-Argon Jet in a Hot Vitiated Co-flow

2018-04-03
2018-01-1139
This paper presents a study of the Hydrogen/Argon lifted flames in a hot vitiated co-flow. The effects of the dilution of argon in central fuel, the volume fraction of argon in the central fuel, co-flow temperature and the velocity of the central jet on the flame lift-off length were studied, and the numerical simulation with PDF model were analyzed as well. The results could provide theoretical supports for the research of the hydrogen fueled argon cycle engine which is a potential way not only to increase the indicated thermal efficiency of internal combustion engine but also realize the zero emission. The result shows that at the same boundary condition the central jet of H2+Ar has a lower lift-off length than the central jet of H2+N2. By the numerical simulation, the jet flame of H2+Ar has a higher maximum temperature and maximum OH concentration. It indicated that the dilution of argon could promote the combustion reaction.
Technical Paper

Experiments of Methanol-Gasoline SI Engine Performance and Simulation of Flexible Fuel Characteristic Field

2018-04-03
2018-01-0927
Due to the oil crisis and the requirements of energy saving and emission reduction, the research of alternative energy sources for sustainable development has made good progress. Methanol has proven to be a very suitable alternative clean fuel. Compared with gasoline, methanol has a wide range of source and the higher oxygen content and octane number and combustion efficiency, which are beneficial for the engine performance. The effect of different proportions of methanol-gasoline mixed fuel on the performance of SI engine was studied experimentally (lower proportion and higher proportion). It was found that the engine power performance, fuel economy and exhaust emissions were related to the methanol ratio under different operating conditions. In order to adapt to different operating conditions to improve the performance of methanol-gasoline engine, an on-board flexible fuel mixed system was proposed.
Technical Paper

Vibration Analysis of Series-parallel Hybrid Powertrain System under Typical Working Condition and Modes

2018-04-03
2018-01-1291
Powertrain system of series-parallel hybrid vehicle contains multiple excitation sources like engine, motor and generator. The reduction of noise and vibration is quite difficult during multiplex working modes or the switch of modes. Aiming at Series-parallel hybrid powertrain system which contains engine, motor and planetary gear subsystems, this paper considered a typical working condition which is based on the power control strategy and established the torsional vibration mechanical model of hybrid powertrain system. The inherent characteristics and transient vibration response of the electric mode, hybrid mode and parking charging mode were studied and it was discovered that the repetitive frequency of the powertrain system under the three working modes is the same which is only related to inertia and meshing stiffness of planetary gear system. The non-repetitive frequency and corresponding vibration modes under the electric mode and parking charging mode are both close.
Technical Paper

Combined Technologies for Efficiency Improvement on a 1.0 L Turbocharged GDI Engine

2019-04-02
2019-01-0233
The CO2 reduction request for automotive industry promotes the efforts on the engine thermal efficiency improvement. The goal of this research is to improve the thermal efficiency on an extremely downsized 3-cylinder 1.0 L turbocharged gasoline direct injection engine. Effects of compression ratio, exhaust gas recirculation (EGR), valve timing and viscosity of oil on fuel economy were studied. The results show that increasing compression ratio, from 9.6 to 12, can improve fuel economy at relative low load (below 12 bar BMEP), but has a negative effect at high load due to increased knock intensity. EGR can significantly reduce the pumping loss at low load, optimize combustion phase and reduce exhaust gas temperature. Therefore, the fuel consumption is reduced at all test points. The average brake thermal efficiency (BTE) benefit percentage is 3.47% with 9.6 compression ratio and 5.33 % with 12 compression ratio.
Technical Paper

Simulation Investigation of Working Process and Emissions on GDI Engine Fueled with Hydrous Ethanol Gasoline Blends

2019-04-02
2019-01-0219
Compared with ordinary gasoline, using ethanol gasoline blends as fuel of Internal Combustion Engine is beneficial for the performance of power, economy and emission of engine. However, the fuel ethanol blended in ethanol gasoline blends currently is usually anhydrous ethanol, which requires dewatering implementer in production process, and the cost is high. Therefore, the production cost can be significantly reduced by replacement of anhydrous ethanol with hydrous ethanol while exerting the advantage of ethanol gasoline blends. In this study, computation fluid dynamics (CFD) software CONVERGE is employed to establish a simulation model of an actual gasoline direct injection (GDI) engine, and investigate the effect of burning hydrous ethanol gasoline blends and different injection strategy on combustion process and emission, and the validity of the model was validated by experiments.
Technical Paper

Experimental Study on Particulate Emission Characteristics of an Urban Bus Equipped with CCRT After-Treatment System Fuelled with Biodiesel Blend

2017-03-28
2017-01-0933
Biodiesel as a renewable energy is becoming increasingly attractive due to the growing scarcity of conventional fossil fuels. Meanwhile, the development of after-treatment technologies for the diesel engine brings new insight concerning emissions especially the particulate matter pollutants. In order to study the coupling effects of biodiesel blend and CCRT (Catalyzed Continuously Regeneration Trap) on the particulate matter emissions, the particulate matter emissions from an urban bus with and without CCRT burning BD0 and BD10 respectively was tested and analyzed using electrical low pressure impactor (ELPI). The operation conditions included steady state conditions and transient conditions. Results showed that the particulate number-size distribution of BD10 and BD0 both had two peaks in nuclei mode and accumulation mode at the conditions of idle, low speed and medium speed while at high speed condition the particulate number-size distribution only had one peak.
Technical Paper

Chassis Dynamometer and On-Road Evaluations of Emissions from a Diesel-Electric Hybrid Bus

2017-03-28
2017-01-0984
Recently Hybrid Electric Buses (HEBs) have been widely used in China for energy saving and emission reduction. In order to study the real road emission performance of HEBs, the emission tests of an in-use diesel-electric hybrid bus (DHEB) are evaluated both on chassis dynamometer over China City Bus Cycles (CCBC) and on-road using Portable Emissions Measurement Systems (PEMS). The DHEB is powered by electric motor alone at speed of 0~20km/h. When the speed exceeds 20km/h, engine gets engaged rapidly and then works corporately with the electric motor to drive the bus. For chassis dynamometer test over CCBC, emissions of NOx, particulate number, particulate mass, and THC of the DHEB are 7.68g/km, 5.88E+11#/km, 0.412mg/km, and 0.062g/km, respectively. They have all decreased greatly compared to those of the diesel bus. But the CO emission which is 3.48g/km has increased significantly. Then the Real Driving Emissions (RDE) of the DHEB are compared with the dynamometer test results.
Technical Paper

Finite Element Analysis of Cylinder Gasket under Cylinder Pressure and Structural Optimization of the Cylinder Gasket

2017-03-28
2017-01-1080
This paper aimed at a gasoline engine "cylinder head- cylinder gasket-cylinder body-bolt" sealing system, built the 3D solid model and the finite element model of the assembly, and calculated the stress and strain of the cylinder gasket under the cylinder pressure and the deformation of the engine block. In addition, based on the calculation results, this paper put forward the optimization scheme of the cylinder gasket structure, re-established the simulation model, and get the calculation results. The calculation results showed that the cylinder pressure had influence on the sealing performance of the cylinder gasket, and the influence of cylinder pressure should be taken into consideration when designing the cylinder gasket. When the cylinder pressure was applied, the overall contact stress of the cylinder gasket had decreased, and the whole remaining height of the gasket had increased.
Technical Paper

Research on a New Electromagnetic Valve Actuator Based on Voice Coil Motor for Automobile Engines

2017-03-28
2017-01-1070
The electromagnetic valve actuator (EMVA) is considered a technological solution for decoupling between crankshaft and camshaft to improve engine performance, emissions, and fuel efficiency. Conventional EMVA consists of two electromagnets, an armature, and two springs has been proved to have the drawbacks of fixed lift, impact noise, complex control method and large power consumption. This paper proposes a new type of EMVA that uses voice coil motor (VCM) as electromagnetic valve actuator. This new camless valvetrain (VEMA) is characterized by simple structure, flexible controllable and low actuating power. VCM provides an almost flat force versus stroke curve that is very useful for high precision trajectory control to achieve soft landing within simple control algorithm.
Technical Paper

Emergency Steering Evasion Control by Combining the Yaw Moment with Steering Assistance

2018-04-03
2018-01-0818
The coordinated control of stability and steering systems in collision avoidance steering evasion has been widely studied in vehicle active safety area, but the studies are mainly aimed at autonomous vehicle without driver or conventional combustion engine vehicle. This paper focuses on the control of hybrid vehicle integrated with rear hub in emergency steering evasion situation, and considering the driver’s characteristics. First, the mathematics model of vehicle dynamics and driver has been given. Second, based on the planned steering evasion path, the model predictive control method is presented for achieving higher evasion path tracking accuracy under driver’s steering input. The prediction model includes an adaptive preview distance driver model and a vehicle dynamics model to predict the driver input and the vehicle trajectory.
Technical Paper

One New Transient Transfer Path Analyses of Vehicle Interior Vibration Excited by Vertical Speed Hump

2018-04-03
2018-01-0687
Vertical excitations from obstacles on public road are typical and likely to increase vehicle interior vibration through major paths of wheel spindle-suspension-body. A new transient transfer path analysis (TTPA) methodology is presented combining the substructure reverse matrix method based on FRFs with operational excitation. Additionally, a new kind of experimental method is applied to solve an engineering problem and also validates the TTPA theory above. There are three steps in all. Firstly, vibration in Z direction of wheel spindle was collected in one proving ground and represented on MTS 320 road simulator bench after many times of iteration of piston signals. This procedure guarantees excitation decoupling in one certain direction so it leads to accurate frequency response functions (FRFs) under transient shocking excitation. Secondly, the new transient transfer path analysis approach was used to calculate vibration contribution of wheel-suspension-body.
Technical Paper

Fast Prediction of Disc Brake Squeal Uncertainty Based on Perturbation Concept

2018-04-03
2018-01-0677
It is a worldwide technical difficulty to predict brake squeal uncertainty and its propagation regularity due to key parameters’ randomcity. However, as a widely used stochastic finite element method, Monte Carlo Method costs a large amount of time in calculation. It is very important to establish a fast prediction method for brake squeal uncertainty due to key parameters. In this paper, perturbation concept was applied for disc brake squeal uncertainty prediction. Firstly, a simplified, parameterized finite element model of disc brake was established for complex eigenvalues calculation. Then sensitivity analysis of real parts and frequencies of complex eigenvalues to influence parameters was carried out based on the finite element model. A series of second order perturbation polynomial formulas were fitted from the sensitivity analysis results, which were used for calculation of uncertain complex eigenvalues.
Technical Paper

Effect of a Perforated Resonator on the Flow Performances of the Turbocharged Intake System for a Diesel Engine

2018-04-03
2018-01-0678
The flow issues of the turbocharged intake system for a diesel engine are mainly introduced in this work and the effects of a multi-chamber perforated resonator which can efficiently attenuate broadband noise and has compact structure on the flow performances of the intake system is analyzed by contrast. Based on the acoustic grid resulting from pre-processing of 3D models for finite element analysis, a computational fluid dynamics flow simulation comparative analysis between the intake systems with and without a resonator including pressure and velocity distribution is conducted with the software Star-CCM+. The simulation results indicate that the air pressure drop of the intake system with a resonator is slightly higher than that of the intake system without a resonator but it is still relatively low compared with that of the entire intake system.
Technical Paper

Effects of DOC and CDPF Catalyst Composition on Emission Characteristics of Light-Duty Diesel Engine with DOC + CDPF + SCR System

2018-04-03
2018-01-0337
With regulatory standards for diesel engine emissions becoming stricter worldwide, integrated catalytic systems are becoming increasingly necessary. One of the better approaches is to use an after-treatment system consisting of a diesel oxidation catalyst (DOC), a catalyzed diesel particulate filter (CDPF), and a selective catalytic reduction (SCR), but many factors can affect how well this system works. This study investigates the effects of DOC and CDPF catalyst composition on emissions characteristics for DOC + CDPF + SCR systems by collecting reactor and engine data. The reactor results show that the light-off temperatures (T50) of CO and C3H6 increase with the growth of Pt:Pd ratio while the T50 of NO degrades. An engine dynamometer test was conducted on a light-duty diesel engine equipped with DOC + CDPF + SCR. The results show light-off curves of CO and THC that are smoother than the reactor data.
Technical Paper

Study on Correlation between After-Treatment Performance and Running Conditions, Exhaust Parameters of Heavy-Duty Diesel Vehicle

2018-04-03
2018-01-0338
The increasingly stringent emission regulations have mandated the use of CCRT (catalyzed continuously regeneration trap) made by upstream DOC (diesel oxidation catalyst) and downstream CDPF (catalyzed diesel particulate filter) for heavy-duty diesel vehicles, which is proved to be the only way that can efficiently control the gaseous and particulate emissions. The performance of after-treatment is greatly influenced by the running conditions of the diesel vehicle and its exhaust parameters, so this paper intended to use grey relational analysis to study the correlation between running conditions (velocity, acceleration, VSP (vehicle specific power)), exhaust parameters (exhaust flow rate, DOC inlet temperature, concentrations of CO, THC, O2 and NOX) and the performance of DOC and CCRT based on chassis dynamometer test. Results showed that the effect of DOC on CO and THC is mainly affected by exhaust flow rate, exhaust temperature and THC concentration.
X