Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effect of High Frequency Acoustic Field on Atomization Behavior of Ethanol and Kerosene

2017-10-08
2017-01-2318
Combustion instability often occurs inside the combustion chamber of aero engine. Fuel atomization and evaporation, one of the controlling processes of combustion rate, is an important mechanism of the combustion instability. To tackle combustion instability, it challenges a deep understanding of the underlying mechanism of fuel atomization and evaporation. In this paper, acoustic field was established to simulate the pressure oscillation. Transient spray images of ethanol and kerosene were recorded using high-speed camera. The obtained images were processed by MATLAB to extract and analyze the related data. Spatial fuel atomization characteristics was analytically examined by multi-threshold image method to analyze the effect of the high frequency acoustic field on the fuel break-up and disintegration. The results show that the half spray cone angle on the side with speaker is suppressed by the presence of the imposed acoustic field compared with the case without speaker.
Technical Paper

The Nozzle Flows and Atomization Characteristics of the Two-Component Surrogate Fuel of Diesel from Indirect Coal Liquefaction at Engine Conditions

2018-09-10
2018-01-1691
Recently, all world countries facing the stringent emission regulations have been encouraged to explore the clean fuel. The diesel from indirect coal liquefaction (DICL) has been verified that can reduce the soot and NOx emissions of compression-ignition engine. However, the atomization characteristics of DICL are rarely studied. The aim of this work is to numerically analyze the inner nozzle flow and the atomization characteristics of the DICL and compare the global and local flow characteristics of the DICL with the NO.2 diesel (D2) at engine conditions. A surrogate fuel of the DICL (a mixture of 72.4% n-dodecane and 27.6% methylcyclohexane by mass) was built according to its components to simulate the atomization characteristics of the DICL under the high-temperature and high-pressure environment (non-reacting) by the Large Eddy Simulation (LES).
X