Refine Your Search

Topic

Search Results

Technical Paper

Development and Demonstration of a New Range-Extension Hybrid Powertrain Concept

2020-04-14
2020-01-0845
A new range-extension hybrid powertrain concept, namely the Tongji Extended-range Hybrid Technology (TJEHT) was developed and demonstrated in this study. This hybrid system is composed of a direct-injection gasoline engine, a traction motor, an Integrated Starter-Generator (ISG) motor, and a transmission. In addition, an electronically controlled clutch between the ISG motor and engine, and an electronically controlled synchronizer between the ISG motor and transmission are also employed in the transmission case. Hence, this system can provide six basic operating modes including the single-motor driving, dual-motor driving, serial driving, parallel driving, engine-only driving and regeneration mode depending on the engagement status of the clutch and synchronizer. Importantly, the unique dual-motor operation mode can improve vehicle acceleration performance and the overall operating efficiency.
Technical Paper

Vehicle Validation for Pressure Estimation Algorithms of Decoupled EHB Based on Actuator Characteristics and Vehicle Dynamics

2020-04-14
2020-01-0210
Recently, electro-hydraulic brake systems (EHB) has been developed to take place of the vacuum booster, having the advantage of faster pressure build-up and continuous pressure regulation. In contrast to the vacuum booster, the pressure estimation for EHB is worth to be studied due to its abundant resource (i.e. electric motor) and cost-effective benefit. This work improves an interconnected pressure estimation algorithm (IPEA) based on actuator characteristics by introducing the vehicle dynamics and validates it via vehicle tests. Considering the previous IPEA as the prior pressure estimation, the wheel speed feedback is used for modification via a proportional-integral (PI) observer. Superior to the IPEA based on actuator characteristics, the proposed PEA improves the accuracy by more than 20% under the mismatch of pressure-position relation.
Journal Article

The Influences of the Subframe Flexibility on Handling and Stability Simulation When Using ADAMS/Car

2016-04-05
2016-01-1637
To analyze the K&C (kinematics and compliance), handling and stability performance of the vehicle chassis, some simulations are usually performed using a multi-body dynamics software named ADAMS. This software introduces assumptions that simplify the components of the suspension as rigid bodies. However, these assumptions weaken the accuracy of the simulation of ADAMS. Therefore the use of flexible bodies in K&C and handling and stability simulation in ADAMS is needed to conduct more precise suspension system designs. This paper mainly analyses the influences of the subframe flexibility on handling and stability simulation in ADAMS/Car. Two complete vehicle models are built using ADAMS/Car and Hypermesh. The only difference between the two models is the subframe of the front McPherson suspension. One of the subframes is simplified as a rigid body. The other one is a flexible body built using the MNF file from Hypermesh.
Journal Article

Anti-Lock Braking System Control Design on An Integrated-Electro-Hydraulic Braking System

2017-03-28
2017-01-1578
Two control strategies, safety preferred control and master cylinder oscillation control, were designed for anti-lock braking on a novel integrated-electro-hydraulic braking system (I-EHB) which has only four solenoid valves in its innovative hydraulic control unit (HCU) instead of eight in a traditional one. The main idea of safety preferred control is to reduce the hydraulic pressure provided by the motor in the master cylinder whenever a wheel tends to be locking even if some of the other wheels may need more braking torque. In contrast, regarding master cylinder oscillation control, a sinusoidal signal is given to the motor making the hydraulic pressure in the master cylinder oscillate in certain frequency and amplitude. Hardware-in-the-loop simulations were conducted to verify the effectiveness of the two control strategies mentioned above and to evaluate them.
Technical Paper

Brake Judder Induced Steering Wheel Vibration: Experiment, Simulation and Analysis

2007-10-07
2007-01-3966
The prevention and control of brake judder and its various negative effects has been a key target of vehicle production. One of the effects is the steering wheel vibration during vehicle braking. Experimental and theoretical investigation into “steering wheel vibration due to brake judder” is extensively presented in this paper. The vehicle road test is carried out under controlled braking conditions. During the test, the accelerations of brake caliper assembly, suspension low and upper control arm, steering arm, tie rod and steering wheel, left and right wheel rotary speed, are measured by a multi-channel data acquisition system. The data processing focuses on order tracking analysis and transfer path analysis to work out the related resonant components. A disc brake assembly, with deliberately designed disc thickness variation and surface run-out combinations, is tested on a brake dynamometer.
Technical Paper

Longitudinal Velocity Estimation of Electric Vehicle with 4 In-wheel Motors

2008-04-14
2008-01-0605
This paper describes a methodology to estimate longitudinal velocity of a 4-wheel-drive electric vehicle, in which wheel driven torque can be independently controlled by electric motor. Without non-driven wheels it would be difficult to estimate the vehicle longitudinal velocity precisely, especially when all of four wheels have large slip ratio. Therefore, an estimation methodology based on fuzzy logic is put forward, which uses four wheel speed and longitudinal acceleration as input signals. However, this method works not very well when two or more wheels have large slip ratio. In order to improve estimation effect, a state variable filter is designed to calculate wheel acceleration signals, which are used as additional signals to the fuzzy logic observer. Furthermore, the possibility of using four wheel driving torque signals to improve the estimation precision is also discussed.
Technical Paper

Model Based Yaw Rate Estimation of Electric Vehicle with 4 in-Wheel Motors

2009-04-20
2009-01-0463
This paper describes a methodology to estimate yaw rate of a 4-wheel-drive electric vehicle, in which wheel driven torque can be independently controlled by electric motor. Without non-driven wheels it would be difficult to estimate the vehicle yaw rate precisely, especially when some of the four wheels have large slip ratio. Therefore, a model based estimation methodology is put forward, which uses four wheel speeds, steering wheel angle and vehicle lateral acceleration as input signals. Firstly the yaw rate is estimated through three different ways considering both vehicle kinematics and vehicle dynamics. Vehicle kinematics based method has good estimation accuracy even when the vehicle has large lateral acceleration. However, it can not provide satisfying results when the wheel has large slip ratio. In contrast, vehicle dynamics based method is not so sensitive to wheel slip ratio.
Technical Paper

Influences of Pad Backplate on Thermo-Mechnical Coupling in Disc Brake

2016-04-05
2016-01-1354
The transient thermo-mechanical coupling dynamic model of ventilated disc brake with asymmetrical outer and inner thickness was established by means of Msc-marc software. In the model, pad backplate is simplified as a rigid surface with the same shape of brake lining and is bonded together with brake lining. Control node is associated with the rigid surface and the equivalent force that replaces the pressure is applied on the control nodes, of which the degrees of freedom in radial and rotational directions are constrained. With distribution characteristics of disc temperature field, normal stress field and lateral thermo-elastic deformation and thickness for the evaluation, the impacts of brake pad constraints on brake thermomechanical coupling characteristics were analyzed. The simulation results show that the brake pad back plate is an important structure in brake thermo-mechanical coupling analysis, which can’t be ignored in simulation computing.
Technical Paper

An Integrated-Electro-Hydraulic Brake System for Active Safety

2016-04-05
2016-01-1640
An integrated-electro-hydraulic brake system (I-EHB) is presented to fulfill the requirements of active safety. Because I-EHB can control the brake pressure accurately and fast. Furthermore I-EHB is a decoupled system, so it could make the maximum regenerative braking while offers the same brake pedal feeling and also good for ADAS and unmanned driving application. Based on the analysis of current electrohydraulic brake systems, regulation requirements and the requirements for brake system, the operating mode requirements of I-EHB are formed. Furthermore, system topological structure and a conceptual design are proposed. After the selection of key components, the parameter design is accomplished by modeling the system. According to the above-mentioned design method, an I-EHB prototype and test rig is made. Through the test rig, characteristics of the system are tested. Results show that this I-EHB system responded rapidly.
Technical Paper

Hydraulic Control of Integrated Electronic Hydraulic Brake System based on Command Feed-Forward

2016-04-05
2016-01-1658
With the development of vehicle electrification, electronic hydraulic brake system is gradually applied. Many companies have introduced products related to integrated electronic hydraulic brake system (I-EHB). In this paper, an I-EHB system is introduced, which uses the motor to drive the reduction mechanism as a power source for braking. The reduction mechanism is composed of a turbine, a worm, a gear and a rack. A control method based on command feed-forward is proposed to improve the hydraulic pressure control of I-EHB. Based on previous research, we simplify the system to first order system, and the theoretical design of the command feed-forward compensator is carried out. The feed-forward controller is applied, including the velocity feed-forward and the acceleration feed-forward, to improve the response speed and tracking effect of the system.
Technical Paper

Influences of Initial DTV on Thermomechnical Coupling in Disc Brake System

2017-09-17
2017-01-2492
In this paper, the initial disc thickness variation (DTV) of a ventilated disc in automotive brake system is modeled as sinusoidal function of the second order. The transient thermomechanical coupling properties of the brake system is simulated using finite element (FE) modeling. The system models and results were verified by a thermomechanical coupling test of a disc brake conducted on a brake dynamometer. By using varied evaluation indexes such as the temperature distribution, the normal stress and the elastic deformation of disc surfaces, the influences of the initial DTV and its direction as well as its amplitude on the thermomechanical coupling characteristics were analyzed.
Technical Paper

Hydraulic Control of Integrated Electronic Hydraulic Brake System Based on LuGre Friction Model

2017-09-17
2017-01-2513
In this paper, an integrated electronic hydraulic brake(I-EHB) system is introduced, which is mainly composed of a motor, a worm gear, a worm, a gear, a rack etc. The friction leads the system to the creeping phenomenon and the dead zone. These phenomenon seriously affect the response speed and the hydraulic pressure control .In order to realize the accurate hydraulic pressure control of I-EHB system, a new friction compensation control method is proposed based on LuGre dynamic friction model. And the theoretical design of adaptive control method is designed based on the feedback of the master cylinder pressure and the operating state of the system. Then the stability of the control method is proved by Lyapunov theorem. A co-simulation model is built with Matlab/Simulink and AMESim, so as to prove the validity of the control method.
Technical Paper

Vehicle Sideslip Angle Estimation Considering the Tire Pneumatic Trail Variation

2018-04-03
2018-01-0571
Vehicle sideslip angle is significant for electronic stability control devices and hard to estimate due to the nonlinear and uncertain vehicle and tire dynamics. In this paper, based on the two track vehicle dynamic model considering the tire pneumatic trail variation, the vehicle sideslip angle estimation method was proposed. First, the extra steering angle of each wheel caused by kinematics and compliance characteristics of the steering system and suspension system was analyzed. The steering angle estimation method was designed. Since the pneumatic trail would vary with different tire slip angle, distances between the center of gravity (COG) and front&rear axle also change with the tire slip angle. Then, based on the dynamic pneumatic trail and estimated steering angle, we modified the traditional two track vehicle dynamic model using a brush tire model. This model matches the vehicle dynamics more accurately.
Technical Paper

Vehicle Sideslip Angle Estimation: A Review

2018-04-03
2018-01-0569
Vehicle sideslip angle estimation is of great importance to the vehicle stability control as it could not be measured directly by ordinary vehicle-mounted sensors. As a result, researchers worldwide have carried out comprehensive research in estimating the vehicle sideslip angle. First, as the attitude would affect the acceleration information measured by the IMU directly, different kinds of vehicle attitude estimation methods with multi-sensor fusion are presented. Then, the estimation algorithms of the vehicle sideslip angle are classified into the following three aspects: kinematic model based method, dynamic model based method, and fusion method. The characteristics of different estimation algorithms are also discussed. Finally, the conclusion and development trend of the sideslip angle estimation are prospected.
Technical Paper

Study of Stability Control for Electric Vehicles with Active Control Differential

2013-04-08
2013-01-0715
This article conducts a research on the active control differential (ACD) yaw moment stability control for central motor driven automobiles. By calculation, the active control differential yaw moment generation ability which is limited by the maximum differential twist ratio and the motor output torque is not enough compared with traditional Electronic Stability Program (ESP). A Matlab and CarSim joint simulation is applied on double lane change and sine wave steering input condition, through which the active control differential effect is analyzed. It is concluded that yaw moment control using active control differential has improved the steering sensitivity and yaw rate tracking effect to some extent in double lane change test and it also has been verified that it works effectively to keep the stability of the vehicle in sine wave test.
Technical Paper

An Anti-Lock Braking Control Strategy for 4WD Electric Vehicle Based on Variable Structure Control

2013-04-08
2013-01-0717
Based on the four-wheel-drive electric vehicle (4WD EV), a variable structure control (VSC) strategy is designed in this paper for the anti-lock braking control. With nonpeak friction coefficient as target, sign judgment method of switch function in this VSC strategy is improved and a new control algorithm is proposed. The improved VSC strategy is made robust to the parameters of the algorithm and verified by the computer simulation as well as the hard-in-loop test. The results show that the slip rate can be controlled to a point in the stable area near the optimal slip ratio and the control strategy can effectively realize the anti-lock braking control.
Technical Paper

Braking Pressure Tracking Control of a Pressure Sensor Unequipped Electro-Hydraulic Booster Based on a Nonlinear Observer

2018-04-03
2018-01-0581
BBW (Brake-by-wire) can increase the vehicle safety performance due to high control accuracy and fast response speed. As one solution of BBW, the novel Integrated-electro-hydraulic brake system (I-EHB) is proposed, which consists of electro-hydraulic booster and hydraulic pressure control unit. The electro-hydraulic booster is activated by an electric motor that driving linear motion mechanism to directly produce the master cylinder pressure. With electro-hydraulic booster as an actuator, the hydraulic pressure control problem is a key issue. Most literatures deal with the pressure control issue based on the feedback pressure signal measured by pressure sensor. As far as the authors are aware, none of the proposed techniques takes into account the pressure sensor unequipped BBW. In this paper, there is no pressure feedback signal, but there is only position feedback signal measured by position sensor for control law design.
Technical Paper

Optimal Torque Allocation for Distributed Drive Electric Skid-Steered Vehicles Based on Energy Efficiency

2018-04-03
2018-01-0579
Steering of skid-steered vehicles without steering mechanism is realized by differential drive/brake torque generated from in-wheel motors at left and right sides. Compared to traditional Ackerman-steered vehicles, skid-steered vehicles consume much more energy while steering due to greater steering resistance. Torque allocation is critical to the distributed drive skid-steered vehicles, since it influences not only steering performance, but also energy efficiency. In this paper, the dynamic characteristics of six-wheeled skid-steered vehicles were analyzed, and a 2-DOF vehicle model was established, which is important for both motion tracking control and torque allocation. Furthermore, a hierarchical controller was proposed. Considering tire force characteristics and tire slip, the upper layer calculates the generalized force and desired yaw moment based on anti-windup PI (proportion-integral) control method.
Technical Paper

Efficient Trajectory Planning for Tractor-Trailer Vehicles with an Incremental Optimization Solving Algorithm

2022-03-29
2022-01-0138
A tractor-trailer vehicle (TTV) consists of an actuated tractor attached with several full trailers. Because of its nonlinear and noncompleted constraints, it is a challenging task to avoid collisions for path planner. In this paper, we propose an efficient method to plan an optimal trajectory for TTV to reach the destination without any collision. To deal with the complicated constraints, the trajectory planning problem is formulated as an optimal control problem uniformly, which can be solved by the interior point method. A novel incremental optimization solving algorithm (IOSA) is proposed to accelerate the optimization process, which makes the number of trailers and the size of obstacles increase asynchronously. Simulation experiments are carried out in two scenarios with static obstacles. Compared with other methods, the results show that the planning method with IOSA outperforms in the efficiency.
Technical Paper

Vibration Analysis of Series-parallel Hybrid Powertrain System under Typical Working Condition and Modes

2018-04-03
2018-01-1291
Powertrain system of series-parallel hybrid vehicle contains multiple excitation sources like engine, motor and generator. The reduction of noise and vibration is quite difficult during multiplex working modes or the switch of modes. Aiming at Series-parallel hybrid powertrain system which contains engine, motor and planetary gear subsystems, this paper considered a typical working condition which is based on the power control strategy and established the torsional vibration mechanical model of hybrid powertrain system. The inherent characteristics and transient vibration response of the electric mode, hybrid mode and parking charging mode were studied and it was discovered that the repetitive frequency of the powertrain system under the three working modes is the same which is only related to inertia and meshing stiffness of planetary gear system. The non-repetitive frequency and corresponding vibration modes under the electric mode and parking charging mode are both close.
X