Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Effect of Spark Timing on Performance and Emissions of a Small Spark Ignition Engine with Dual Ethanol Fuel Injection

2017-10-08
2017-01-2230
Ethanol as a renewable fuel has been used widely in vehicles. Dual fuel injection is one of the new techniques in development for increasing the engine’s thermal efficiency and reducing the pollutant emissions. This study reports experimental investigation to the dual ethanol fuel injection with a focus on the effect of spark timing on the engine performance at different volumetric ratios of ethanol directly injected to ethanol port injected. Experiments were conducted on a single cylinder 250cc spark ignition engine at two engine loads and 3500 RPM. The spark timing was varied from 15 to 42 CAD bTDC at the light load and from 15 to 32 CAD bTDC at the medium load, while the volumetric ratio of direct injection (DI%) was varied from 0% to 100%.
Technical Paper

Investigations of Split Injection Strategies for the Improvement of Combustion and Soot Emissions Characteristics Based On the Two-Color Method in a Heavy-Duty Diesel Engine

2013-10-14
2013-01-2523
Premixed charge compression ignition (PCCI) is a new combustion mode to reduce NOX and soot emission. It requires the optimization of the injection timing and pressure, fuel mass in pilot injection and EGR rate. A 6-cylinder, turbocharged, common rail heavy-duty diesel engine was used in this study. The effect of multiple injection strategies on diesel fuel combustion process, heat release rate, emission and economy of diesel engine is studied. The multiple injection strategies include different EGR level, pilot injection timing, pilot injection mass and post injection timing to achieve the homogeneous compression ignition and lower temperature combustion of diesel engine. Based on endoscope technology, the two-color method was applied to take the flame images in the engine cylinder and obtain soot concentration distribution, to understand the PCCI combustion in diesel engines.
Technical Paper

Emission Performance of LPG Vehicles by Remote Sensing Technique in Hong Kong

2018-09-10
2018-01-1820
Since 1st September 2014 the Hong Kong Environmental Protection Department (HKEPD) has been utilising a Dual Remote Sensing technique to monitor the emissions from gasoline and liquified petroleum gas (LPG) vehicles for identifying high emitting vehicles running on road. Remote sensing measures and determines volume ratios of the emission gases of HC, CO and NO against CO2, which are used for determining if a vehicle is a high emitter. Characterisation of each emission gas is shown and its potential to identify a high emitter is established. The data covers a total of about 2,200,000 LPG vehicle emission measurements taken from 14 different remote sensing units. It was collected from 6th January 2012 to 20th April 2017 across a period before and after the launch of the Remote Sensing programme for evaluating the performance of the programme. The results show that the HKEPD Remote Sensing programme is very effective to detect high emitting vehicles and reduce on-road vehicle emissions.
X