Refine Your Search




Search Results

Technical Paper

Development of “Virtual and Real Simulator” for Engine

We developed a progressive system, “virtual and real simulator (V&R-S)” for engine. To innovate the process of engine development, the test system creates dynamic load of drivetrain, wheel, body and road with the virtual vehicle model. We set the phenomena such as drivetrain vibration for reproducing object of this system. The load is transmitted to the engine crankshaft end as torque with the connecting shaft made of fiberglass. The mainly developed technologies are the dynamometer with rotational inertia as low as engine, correction method of transmitted torque error of connecting shaft by H-infinity control. Thanks to these, we achieved the capability of optimization for most of dynamic characteristics (emission, fuel consumption, drivability) on engine test bench. And we now be able to limit real vehicle test to the final tuning. As a result, we have realized new engine evaluation and optimization process.
Technical Paper

Combustion Analysis on Piston Cavity Shape of a Gasoline Direct Injection Engine

This paper describes the analyses to improve both stratified and homogeneous charge combustion of a gasoline direct injection engine. In this study, computational fluid dynamics (CFD) and high-speed hydrocarbon (HC) measurement were employed to observe the mixture formation process. The analysis of the combustion flame propagation was conducted by in-cylinder visualization and ion current measurement. As a result of the analyses, the following conclusions were made: 1 An oval shaped wall cavity can direct the mixture gas to the vicinity of the spark plug better than a conventional shell-shaped wall cavity. The oval shaped wall cavity can improve fuel consumption and HC emission at stratified charge combustion. 2 A shallow cavity improves the homogenization of mixture gases and wide open throttle (WOT) performance.
Technical Paper

Effects of Fuel Properties on Premixed Charge Compression Ignition Combustion in a Direct Injection Diesel Engine

Effects of fuel distillation characteristics and cetane number on premixed charge compression ignition (PCCI) combustion were investigated for the purpose of reducing NOx and PM emissions from a direct injection diesel engine. The test engine had a hole type injection nozzle for conventional diesel combustion at high load operation. A low compression ratio and cooled EGR were applied to the test engine in order to reduce the compression temperature for avoiding pre-ignition. The investigation results show that, in the case of ignition control by EGR, a light fuel with lower distillation characteristics had an advantage of reducing smoke at higher loads. This means that high volatility fuel is effective in promoting lean mixture formation of fuel and air during the ignition delay. Moreover, lowering the cetane number was effective in reducing NOx emissions by suppression of combustion temperature.
Technical Paper

Development of the Hybrid/Battery ECU for the Toyota Hybrid System

For energy saving and global warming prevention, Toyota has developed Toyota Hybrid System (THS) for mass-produced passenger cars, which achieves drastic improvement in fuel efficiency and reduction in exhaust emissions compared to conventional gasoline engine cars. The THS has two motive power sources which engage depending on driving conditions. It's power is supplied either from an engine (controlled by the engine ECU) or an electric motor (controlled by the motor ECU) which is powered by a high-voltage battery (monitored by the battery ECU). These ECUs are controlled by a hybrid ECU. Each ECU has been developed with a fail-safe system in mind, to ensure driver safety in case of vehicle breakdowns. Among these ECUs, this paper reports particularly on the newly introduced ECUs: hybrid ECU and battery ECU. In the development of these ECUs, special attention was focused on fail-safe performance.
Technical Paper

Influence of New Engine Oil Additives on the Properties of Fluoroelastomers

Fluoroelastmers are well known for their resistance to heat and fluids, and have become major material for crankcase oil seals. On the other hand, new additive formulations are developed for engine lubricants used for fuel economic gasoline engines. In this paper, the effects of those additives on properties of fluoroelastmers are investigated. The results of the immersion tests of both test plaques and oil seal products indicate that dithiocarbamates, friction modifier, have hardening effects on fluoroelastmers. The fluoroelastmer deterioration mechanism is determined by analysis of elastmer samples after immersion in oil.
Technical Paper

Study of Mileage-Related Formaldehyde Emission from Methanol Fueled Vehicles

In order to determine the main factors causing the mileage-related increase in formaldehyde emission from methanol-fueled vehicles, mileage was accumulated on three types of vehicle, each of which had a different air-fuel calibration system. From exhaust emission data obtained during and after the mileage accumulation, it was found that lean burn operation resulted in by far the highest formaldehyde emission increase. An investigation into the reason for the rise in engine-out formaldehyde emission revealed that deposits in the combustion chamber emanating from the lubricating oil promotes formaldehyde formation. Furthermore it was learnt that an increase in engine-out NOx emissions promotes partial oxidation of unburned methanol in the catalyst, leading to a significant increase in catalyst-out formaldehyde emission.
Technical Paper

Development of TOYOTA Reflex Burn (TRB) System in DI Diesel

In order to optimize air-fuel mixture formation in a small DI diesel engine, studies were conducted into the effects of combustion chamber shape and fuel spray impingement. Based on the findings of these studies, the shape of the combustion chamber was modified to induce complex air motion with high turbulence and fuel injection was carefully controlled to achieve optimum impingement intensity. As a result, the mixture formation process was greatly improved with a consequent gain in terms of engine performance. To clarify the reasons for this improvement in combustion, a three-dimensional calculation of the in-cylinder air motion was made. The behaviour of the spray and flame was observed using an endoscope. The new combustion system, named TOYOTA Reflex Burn system (TRB) thus developed has been adopted in production engines since August 1988.
Technical Paper

Silicon Nitride Turbocharger Rotor for High Performance Automotive Engines

Toyota Motor Corporation has mass-produced turbochargers with silicon nitride ceramic rotors since October, 1989. Those turbochargers have been introduced into Celica and MR-2 which are Toyota sporty-type passenger cars. The designing of ceramic rotor was carried out in order to ensure the strength and durability of the component as well as to obtain the same aerodynamic characteristics as in the metal rotor. A moment of inertia was reduced by 60% using ceramic rotor which improved turbocharger response. The ceramic rotor was joined to metal shaft by new method which compensated problems in both shrink fitting and active brazing methods. High temperature strength of silicon nitride material was improved by controlling the amount of sintering additives and sintering conditions. The ceramic injection moulding was employed to mass-produce rotors with complicated shape, applying optimun binder compositions and moulding conditions.
Technical Paper

Toyota Newly Developed 2VZ-FE Type Engine

Newly developed 2VZ-FE engine for CAMRY is a 2.5-liter water cooled and V-type 6-cylinder engine exported from TOYOTA for the first time. This engine has the TOYOTA original 4-valve DOHC system. That is, exhaust camshafts driven by intake camshafts using scissors gears. By its compact configuration with the gear driven camshafts, this V-type 6-cylinder engine is mounted on a front-wheel-drive vehicle which originally had an in-line 4-cylinder engine. By increasing IVZ-FE engine displacement (for domestic), compact pentroof-type combustion chambers, optimum air-fuel ratio and ignition timing by TCCS (TOYOTA Computer Controlled System) and other technologies, a high performance 153HP/5600rpm and a large torque 155ft·lbs/4400rpm have been achieved with a low fuel consumption.
Technical Paper

Numerical Analysis of Flow in the Induction System of an Internal Combustion Engine -Multi-Dimensional Calculation Using a New Method of Lines

Multi-dimensional code has been developed to simulate the effect of geometry on mass flow rate and flow pattern in the induction system of an internal combustion engine. The unsteady compressible Navier-Stokes equations in general curvilinear coordinates are solved by a new method of lines. In the method of lines, the governing equations are spatially discretized by a finite difference approximation and the resulting system of ordinary differential equations is integrated. As a time integration scheme, we newly propose to use the rational Runge-Kutta scheme in order to efficiently simulate the flows in the induction system. The domain-decomposition technique is introduced so that body-fitted structured grid can be easily generated for such complex geometry as a real intake port shape. The present code is applied to 2 and 3 dimensional steady flows in intake port/cylinder assembly with a valve.
Technical Paper

Development of Computer Aided Engineering for Piston Design

Computer Aided Engineering system for automotive piston design was developed which can predict total piston performance in a short time at the planning stage of piston design. Many previous studies attempted to calculate piston performance accurately with experimental data and their main purpose was not to create a tool for piston design. The purpose of this CAE system is to provide a tool for a designer to predict total piston performance easily and rapidly without experimental data. This system has following two characteristics. Firstly, new finite element methods were developed which can predict temperature distribution without experimental data, thermal skirt expansion for a strutted piston and skirt-to-bore contact pressure under engine operating conditions. The predicted result are accurate enough to predict piston performance at the planning stage of piston design.
Technical Paper

Effect of Gasoline Quality on Throttle Response of Engines During Warm-Up

An investigation of throttle response of engines during warm-up was conducted using various gasolines. Test data were obtained from an engine on a test bench at intermediate temperature around 20∼ 30 °C. By using the engine test bench data, correlation coefficients between engine response time and gasoline characteristics were calculated. The result shows that the middle range of distillation temperature is an important factor in gasoline characteristics for warm-up driveability of fuel injected engines. It also shows that 50% distillation temperature can be used as one indication of warm-up driveability. This indication is effective only for hydrocarbon type gasolines. In the case of MTBE blended gasoline, the distillation temperature becomes low when MTBE is blended to gasoline, but throttle response was not improved. It is also found that the effect of gasoline distillation on throttle response is enhanced by intake valve deposits.
Technical Paper

Study of a Two-Degree-of-Freedom Exhaust System

An investigation was conducted into pressure pulsation in the exhaust port, which greatly affects volumetric efficiency and engine performance. From experiments using a single blow-down generator, it was established that the amplitude of the pressure pulsation increases as the manifold branch is lengthened and that large negative pressure synchronized with the timing of valve overlap can be obtained if a proper branch length is used. The performance of a 2ℓ test engine was optimized by varying the length of both the manifold branches and front pipe forks. It was found that whereas front pipe fork length affects engine performance over only a narrow range of engine speed, optimizing manifold branch length results in a considerable improvement over a wide engine speed range. In the course of optimizing the exhaust pipe manifold length of this two-degree-of-freedom exhaust system, abnormal exhaust noises were emitted at specific engine speeds during deceleration.
Technical Paper

Analysis of Oil Consumption Mechanism by Measuring Oil Ring Radial Movement

Oil consumption mechanism was analyzed by measuring the radial movement of the upper side rail in a three piece type oil ring, together with the piston movement. Ultra-miniature inductive displacement sensors were designed to measure the oil ring movement and fitted on the upper side rail with a part of the 3rd land cut out. The clearance between the side rail and the cylinder wall was measured under various operating conditions. The results showed that the radial movement of the oil ring was affected by the piston movement, which results in the possibility of degrading the oil control ability for the cylinder wall because the oil ring temporarily moves with the piston. Accordingly, the designs to improve the piston movement or to be less affected by the movement proved to be an important factor for the reduction of the oil consumption.
Technical Paper

Development of a Measuring Meter and a Control Device for Diesel White Smoke

The white smoke generated by a diesel engine was analyzed and found to consist mainly of hydrocarbons. Test results indicated that the emission level depends on ambient temperature. A compact white smoke meter was developed to enable emission levels to be accurately measured. The internal temperature of this meter is controlled so that white smoke is generated within the measuring device. The meter was used to evaluate the effectiveness of various white smoke emission control devices for the DI diesel engine. The results indicated that an intake air heater offers the greatest potential. Accordingly, a new intake air heater with ceramic PTC thermistor having a very high heating efficiency was developed to reduce white smoke emission.
Technical Paper

A New V-8 Engine for the LEXUS LS 400

A new 4.0 liter V8 engine, 1UZ-FE, has been developed for the luxury sedan, LEXUS LS400. The engine has 4 camshafts and 32 valves, and weighs only 195 kg (430 lbs) having many light alloy components and carefully designed configurations. The appropriate engine displacement and high technology adopted throughout from design to manufacturing process enable the LS400 to run powerfully with excellent fuel economy and a pleasant sounds. It develops 250HP at 5600 rpm and 260ft-lbs of torque at 4400 rpm, and its fuel economy figure, well exceeds the EPA's tax charge level of 22.5mpg. These figures have been achieved through the newest technologies applied to every part of the design, such as: Well studied intake and exhaust systems, centrally located spark plug in the TOYOTA original four-valve combustion chamber, which has a narrow valve including angle, and low friction components like aluminum alloy valve lifters and well balanced moving parts.
Technical Paper

New Exhaust Emission Control System with Two A/F Sensors

Exhaust systems must satisfy a wide range of requirements, including lowering emissions to comply with future fuel economy and emissions regulations. To help meet these requirements, new emissions control systems have been developed today. In addition, since air-fuel ratio (hereafter, A/F) control has a major impact on emissions, a new two-A/F sensor system with A/F sensors provided both upstream and downstream of the catalyst was developed, incorporating an A/F control capable of further lowering emissions with greater robustness. This development identified the hysteresis characteristics of the O2 sensor downstream of the catalyst as an important factor affecting emissions during conventional A/F control. Subsequently, reaction analysis was carried out using sensor reaction models and by evaluating sensors under real-world operating conditions.
Technical Paper

Development of New Electronic Control System for a Diesel Engine

An unique diesel engine electronic control system has been developed, which contains two distinctive features. Firstly, the delivery type fuel injection pump has an electro-magnetic valve to control the quantity of fuel injected. This valve is then acutuated to ensure that the timing of the high pressure fuel flow out stops the fuel injection. In the previous diesel electronic control system, the fuel quantity control was effected via the position control of a mechanical spill ring. Since timing control is more suitable than position control for handling by a microcomputer, the electro-magnetic valve is able to control the quantity of fuel injected more precisely, whilst consisting of a simpler structure. Secondly, an optical combustion timing sensor is able to detect initial combustion timing by sensing the light of the combustion flame in the combustion chamber. Using the signal from the sensor, the microcomputer then exerts a compensating control over the fuel injection timing.
Technical Paper

Multipoint Spark Ignition for Lean Combustion

Effects of multipoint spark ignition on combustion duration, fuel consumption and lean misfire limit are discussed in this paper. A plate, which consists of 12 spark gaps in each cylinder, and a new CD ignition system have been developed for accomplishing the multipoint spark ignition. This plate was installed between cylinder block and head in a 4 cylinder engine. Compared with a single gap, the results of 12 gaps showed a reduced combustion duration by about 50%, a 5% decrease in fuel consumption and an extended lean misfire limit by about 3 air-fuel ratio numbers. Furthermore, the multipoint spark ignition on both sides of the combustion chamber was more effective than only on one side. With this system, HC emission can be reduced as well. The results of this study showed that, compared to those obtained with swirl, this multipoint spark ignition was more effective on improving fuel consumption.
Technical Paper

Flow and Temperature Distribution in an Experimental Engine: LES Studies and Thermographic Imaging

Temperature stratification plays an important role in HCCI combustion. The onsets of auto-ignition and combustion duration are sensitive to the temperature field in the engine cylinder. Numerical simulations of HCCI engine combustion are affected by the use of wall boundary conditions, especially the temperature condition at the cylinder and piston walls. This paper reports on numerical studies and experiments of the temperature field in an optical experimental engine in motored run conditions aiming at improved understanding of the evolution of temperature stratification in the cylinder. The simulations were based on Large-Eddy-Simulation approach which resolves the unsteady energetic large eddy and large scale swirl and tumble structures. Two dimensional temperature experiments were carried out using laser induced phosphorescence with thermographic phosphors seeded to the gas in the cylinder.