Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Toyota's Comprehensive Environmental Technology: Providing Choices for Sustainable Mobility

2011-11-04
In the pursuit of a sustainable transportation systems, Toyota is considering a comprehensive approach pursuing multiple advanced technologies to address three primary issues: GHG, Petroleum Use, and Air Quality. Vehicles must be ready for and affordable to the mass market to provide the customer choices to meet their transportation needs whether it is EV's, Hybrids, Plug-In Hybrids or Fuel Cell Hydrogen Hybrids. Our studies have shown that EVs have the potential to provide significant improvements in energy utilization especially combined with other advanced technologies. Toyota believes that a combination of these technolgies will provide complementary solution that enables a sustainable transportation system. Presenter Takehito Yokoo, Toyota Motor Corporation
Technical Paper

Development of an Engine Torque Estimation Model: Integration of Physical and Statistical Combustion Model

2007-04-16
2007-01-1302
Recent engine systems have become complex due to the requirements of fuel efficiency, exhaust gas emission control and good drivability. To decrease engine development period, model-based development has been adopted [1]. For torque-based vehicle control, engine torque estimation models are necessary. Simple mean-value torque models are available but these models require large amount of test data for development and validation. In addition, they cannot estimate transient torque precisely. On the other hand, complex physical models require considerable time for modeling and simulation. In order to decrease modeling time and retain model accuracy, the Wiebe function is utilized to calculate the heat release rate.
Technical Paper

A Molecular Dynamics Analysis of the Traction Fluids

2007-04-16
2007-01-1016
Non-equilibrium all-atom MD simulations are used to study the traction properties of hydrocarbon fluids. A fluid layer is confined between two solid Fe plates under the constant normal force of 1.0 GPa. Traction simulations are performed by applying a relative sliding motion to the Fe plates. Shear behaviors of nine hydrocarbon fluids are simulated on a sufficiently large film thickness of 6.7 nm, and succeeded in reproducing the order of the experimental traction coefficients. The dynamic mechanism of the momentum transfer on layers of fluid molecules are analyzed focusing on the intermolecular interactions (density profile, orientation factor, pair-correlation function) and intramolecular interactions (intramolecular interaction energy, conformation change of alicyclic ring). In contrast to the case of n-hexane, which shows low traction due to a fragile chain-like interaction, other mechanisms are obtained in the high traction molecules of cyclohexane, dicyclohexyl and santotrac 50.
Technical Paper

Improvements in Low Temperature Diesel Combustion with Blending ETBE to Diesel Fuel

2007-07-23
2007-01-1866
The effects of blending ETBE to diesel fuel on the characteristics of low temperature diesel combustion and exhaust emissions were investigated in a naturally-aspirated DI diesel engine with large rates of cooled EGR. Low temperature smokeless diesel combustion in a wide EGR range was established with ETBE blended diesel fuel as mixture homogeneity is promoted with increased premixed duration due to decreases in ignitability as well as with improvement in fuel vaporization due to the lower boiling point of ETBE. Increasing the ETBE content in the fuel helps to suppress smoke emissions and maintain efficient smokeless operation when increasing EGR, however a too high ETBE content causes misfiring at larger rates of EGR. While the NOx emissions increase with increases in ETBE content at high intake oxygen concentrations, NOx almost completely disappears when reducing the intake oxygen content below 14 % with cooled EGR.
Technical Paper

Development of a Human FE Model with 3-D Geometry of Muscles and Lateral Impact Analysis for the Arm with Muscle Activity

2009-06-09
2009-01-2266
To investigate the effect of muscle activity in pre-impact on injury outcome, we developed a human arm finite element model with muscles which consisted of solid elements and truss elements that could be used for simulating muscle stiffness change for the inputted activity and 3-D geometry of each muscle. Two series of experimental tests on muscle stiffness change and arm flexion were conducted for validation of the model. Comparisons between the simulation results and test data indicated the model validity. Lateral impact simulations for a left arm demonstrated that the muscle activity in pre-impact had significant effects on the motion and stress distribution of the arm bones.
Technical Paper

Improvement of DI Diesel Engine System by Utilizing GTL Fuels Characteristics

2009-06-15
2009-01-1933
Gas To Liquid (GTL) fuels synthesized from natural gas are known as clean fuels. Therefore, GTL fuels have been expected to be a promising option that can reduce the NOx and PM emissions from diesel engines and contribute to the energy security. In this study, in order to clarify the emission reduction potentials, the improvement of DI diesel engine and aftertreatment systems were investigated by utilizing GTL fuels characteristics. To achieve a further reduction of both NOx and PM emissions, the combustion chamber, injection pattern and EGR calibration were modified. From the results of tests, the engine out NOx emissions were reduced to the Euro 6 regulation level and in parallel the expected deteriorations of HC emission and fuel consumption were suppressed because of the characteristics of high cetane number and zero poly-aromatics hydrocarbons. Additionally, an aftertreatment system was optimized to GTL fuel in order to improve NOx conversion efficiency.
Technical Paper

V6-SUV Engine Sound Development

2009-05-19
2009-01-2177
This paper describes the development and achievement of a target engine sound for a V6 SUV in consideration of the sound quality preferences of customers in the U.S. First, a simple definition for engine sound under acceleration was found using order arrangement, frequency balance, and linearity. These elements are the product of commonly used characteristics in conventional development and can be applied simply when setting component targets. The development focused on order arrangement as the most important of these elements, and sounds with and without integer orders were selected as target candidates. Next, subjective auditory evaluations were performed in the U.S. using digitally processed sounds and an evaluation panel comprising roughly 40 subjects. The target sound was determined after classifying the results of this evaluation using cluster analysis.
Technical Paper

Development of Double-Layered Three-Way Catalysts

2009-04-20
2009-01-1081
It is critical to develop high performance three-way catalysts to meet increasing regulations around the world. It was found that a double-layered catalyst loaded with Pt and Rh suppresses Pt-Rh alloying, thereby improving catalytic performance. A double-layered catalyst has the effect of decreasing OSC performance, but this has been overcome by a newly developed Rh support and suppressed Pt grain growth. The developed catalyst is capable of lowering the amount of PGM required by approximately 40%.
Technical Paper

Study of Large OSC Materials (Ln2O2SO4) on the Basis of Sulfur Redox Reaction

2009-04-20
2009-01-1071
Three-way catalyst shows high performance under stoichiometric atmosphere. The CeO2-ZrO2 based materials (CZ) are added as a buffer of O2 concentration. To improve the catalyst performance the larger O2 storage capacity (OSC) are needed. Theoretically, the sulfur oxidation-reduction reaction moves oxygen 8 times larger than cerium. We focused on this phenomenon and synthesized Ln2O2SO4 as a new OSC material. The experimental result under model gas shows that the OSC of Ln2O2SO4 is 5 times lager than CZ.
Technical Paper

Development of Fuel Cell Hybrid Vehicle by Toyota -Durability-

2009-04-20
2009-01-1002
Various issues must be resolved before sustainable mobility can be achieved, the most important of which are reacting to energy supply and demand, and lowering CO2 emissions. At present, the fact that the vast majority of vehicles run on conventional oil is regarded as a problem for which Toyota Motor Corporation (TMC) is developing various technological solutions. Fuel cell (FC) technology is one of the most promising of these solutions. A fuel cell is an extremely clean device that uses hydrogen and oxygen to generate power without emitting substances like CO2, NOx, or PM during operation. Its energy efficiency is high and it is widely expected to form the basis of the next generation of powertrains. Since 1992, TMC has been working to develop the main components of fuel cell vehicles, including the fuel cell itself, and the high pressure hydrogen tank and hybrid systems.
Technical Paper

Study on the Potential Benefits of Plug-in Hybrid Systems

2008-04-14
2008-01-0456
There is ever increasing interest in the issues of fossil fuel depletion, global warming, due to increased atmospheric CO2, and air pollution, all of which are due in some extent to transportation, including automobiles. Hybrid Vehicles (HVs), whose performance and usage are equivalent to existing conventional vehicles, attract lots of attention and have started to come into wider use. Meanwhile, EVs have been considered by many as the best solution for the issues mentioned above. But the technical difficulty of battery energy density is an obstruction to successful implementation. Currently the Plug-in HV (PHEV), which combines the advantages of HV and EV, is being considered as one promising solution. PHEVs can be categorized into two types, according to operating modes. The first uses battery stored energy initially, only stating the internal combustion engine when the battery is depleted. This we call the All Electric Range (AER) system.
Technical Paper

Newly Developed Toyota Plug-in Hybrid System and its Vehicle Performance under Real Life Operation

2011-06-09
2011-37-0033
Toyota has been introducing several hybrid vehicles (HV) since 1997 as a countermeasure to the concerns raised by automobile, like CO2 reduction, energy security, and pollutant emission reduction in urban areas. Plug in hybrid Vehicle (PHV) uses electric energy from grid rather than fuel for most short trips and therefore presents a next step forward towards an even more effective solution for these concerns. For longer trips, the PHV works as a conventional hybrid vehicle, providing all the benefits of Toyota full hybrid technology, such as low fuel consumption, user-friendliness and long cruising range. This paper describes a newly developed plug-in hybrid system and its vehicle performance. This system uses a Li-ion battery with high energy density and has an EV-range within usual trip length without sacrificing cabin space.
Technical Paper

CAE Methodology for Optimizing NVH, Functional Reliability, and Mass Reduction at Engine Concept Design Phase

2011-05-17
2011-01-1511
Due to the global economic downturn and higher environmental awareness, the social demands for low cost and fuel efficient vehicles are increasing. At the same time the engine power is increasing and customer expectations of reliability and NVH levels are increasing. To meet all the requirements, engineers are challenged to design light weight parts with higher performance. However, unconsidered mass reduction carries a risk of compromised NVH, Functional Reliability, and other functional demands. In order to resolve this contradiction, it is important to establish a basic structure with minimum necessary mass at the concept design phase, when there are still many degrees of freedom in the design space. Hence, a multi-objective optimization CAE methodology applicable for designing the basic structure of the Engine system was developed and is detailed below.
Technical Paper

Development of Low Pressure Loop EGR System for Diesel Engines

2011-04-12
2011-01-1413
Low pressure loop (LPL) EGR systems are effective means of simultaneously reducing the NOx emissions and fuel consumption of diesel engines. Further lower emission levels can be achieved by adopting a system that combines LPL EGR with a NOx storage and reduction (NSR) catalyst. However, this combined system has to overcome the issue of combustion fluctuations resulting from changes in the air-fuel ratio due to EGR gas recirculation from either NOx reduction control or diesel particulate filter (DPF) regeneration. The aim of this research was to reduce combustion fluctuations by developing LPL EGR control logic. In order to control the combustion fluctuations caused by LPL EGR, it is necessary to estimate the recirculation time. First, recirculation delay was investigated. It was found that recirculation delay becomes longer when the LPL EGR flow rate or engine speed is low.
Technical Paper

Feasibility Study of Exhaust Emissions in a Natural Gas Diesel Dual Fuel (DDF) Engine

2012-09-10
2012-01-1649
The Diesel Dual Fuel (DDF) vehicle is one of the technologies to convert diesel vehicles for natural gas usage. The purpose of this research was to study the possibility of a DDF vehicle to meet emission standards for diesel vehicles. This research was done for small passenger vehicles and commercial vehicles. The exhaust emissions compliance of such vehicles in a New European Driving Cycle (NEDC) mode which was composed of Urban Driving Cycles (UDC) and an Extra Urban Driving Cycle (EUDC) was evaluated. (see APPENDIXFigure A1) In this study, the passenger vehicle engine, compliant with the EURO4 standard, was converted to a DDF engine. Engine bench tests under steady state conditions showed similar result to previous papers. Total hydrocarbon (HC) emission was extremely high, compared to diesel engine. The NEDC mode emissions of the DDF vehicle were estimated based on these engine bench test results.
Technical Paper

Vehicle Interior Noise and Vibration Reduction Method Using Transfer Function of Body Structure

2011-05-17
2011-01-1692
To reduce interior noise effectively in the vehicle body structure development process, noise and vibration engineers have to first identify the portions of the body that have high sensitivity. Second, the necessary vibration characteristics of each portion must be determined, and third, the appropriate body structure for achieving the target performance of the vehicle must be realized within a short development timeframe. This paper proposes a new method based on the substructure synthesis method which is effective up to 200Hz. This method primarily utilizes equations expressing the relationship between driving point inertance change at arbitrary body portions and the corresponding sound pressure level (SPL) variation at the occupant's ear positions under external force. A modified system equation was derived from the body transfer functions and equation of motion by adding a virtual dynamic stiffness expression into the dynamic stiffness matrix of the vehicle.
Journal Article

FEM System Development for Dynamic Response Analysis of Acoustic Trim

2009-05-19
2009-01-2213
The multilayer vehicle trim is well known for its effective influence upon noise and vibration characteristics not only in the high-frequency range but also in the low and mid-frequency ranges. FEM technologies which represent the accurate stiffness, mass and damping of trim parts such as the dash silencer and the floor carpet are essential in order to extend current body FEM capability to the road noise and the engine noise issues generated in the mid-frequency range. Conventional modeling methodologies such as local impedance and/or spring-mass modeling that express absorption and insulation properties of acoustic trim contain limitations in the mid-frequency range. There are few reliable FEM technologies to create practical vehicle models that represent the precise characteristics of the trim. In this paper, poroelastic modeling of acoustic multilayer trim was established by employing Biot theory.
Journal Article

Prediction of Low Frequency Vibration Caused by Power Train Using Multi-Body Dynamics

2009-05-19
2009-01-2193
1 To predict accurately low frequency vibration caused by the power train, it is essential to consider both the non-steady state characteristics of the engine exciting force and the frequency and amplitude dependent non-linear characteristics of the various components of the transfer system. Conventional steady-state linear analysis using finite element methods (FEM) is unable to handle these characteristics, and as a result, its prediction accuracy is insufficient. This research is based on a multi-body dynamics (MBD) model that is capable of handling non-steady state and non-linear analysis, into which in-cylinder pressure prediction methods were incorporated. The technology developed took into consideration the non-linear characteristics of the transfer system and thereby enabled highly accurate predictions of all systems associated with the vibration reaching the vehicle body.
Technical Paper

Development of High-Strength Aluminum Piston Material

2010-04-12
2010-01-0220
Mass reduction of parts is growing in importance as a means for reducing CO2 emissions from vehicles.The aim of the present research was to contribute to further mass reduction of pistons by developing a new aluminum casting material with highest level of fatigue strength. This goal was achieved using a development concept of creating a homogeneous structure in which Ti was added to create a fine structure and appropriate quantities of Fe and Mn were added to form a compound that is stable at high temperatures. Stand-alone tests of prototype pistons fabricated using the developed material show that the material is 14% stronger than the conventional material, thereby enabling increases in power and mass reduction.
Journal Article

Development of Hardening Depth Evaluation Technique using Eddy Current – Establishment and Introduction of In-line Hardening Depth Inspection System –

2009-04-20
2009-01-0867
A hardening depth evaluation technique using eddy current has been developed, which can be applied to a mass production line for destructive (cutting) inspections. Using this technique, changes in the hardness of the induction-hardened structure can be detected based on the changes in magnetic permeability. This technique reduces the thermal effect and improves measurement accuracy through a multi-frequency exciting method and a difference method algorithm.
X