Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Future Automotive Technical Trends

1988-03-01
871155
This paper provides an overview of the automotive technology and its future trends mainly focussing on Japan. The future automotive technology will basically be on the projection of current technology, although it is expected more progress to be made in advanced and precision control systems. The application of electronics and development of new materials will play a very important role in this area.
Technical Paper

Large Eddy Simulation of Spray Injection to Turbulent Duct Flow from a Slit Injector

2007-04-16
2007-01-1403
The behavior of spray injections to turbulent duct flows from a slit injector for direct-injection gasoline engines was investigated using a combination of large eddy simulation (LES) and Lagrangian discrete droplet model (DDM). As a result, diffusion of droplets in stronger turbulent flows was observed at a later stage of the injection. Moreover, we compared calculation and experimental results by generating a pseudo-particle image from the calculation result.
Technical Paper

Carbon Dioxide Measuring Technology in Engine Combustion Chambers

2004-03-08
2004-01-1340
The authors have developed an instrument that measures the CO2 concentration in engine combustion chambers using the infrared absorption method. The characteristics of this technology are as follows: 1 Measuring can be carried out while the engine is running at 600r/min to more than 3000r/min, full load operation. (Applicable to all EGR conditions) 2 Quick response; 2ms 3 High linearity; ±1% Full Scale and under (FS: 10%) 4 No aggravation is caused to the intake/exhaust performance of engines This technology contributes to the improvement of the in-cylinder EGR system using, for instance, a variable valve-timing mechanism that is now expanding in number of applications, and also the conventional EGR system.
Technical Paper

Development of New Hybrid System for Compact Class Vehicles

2009-04-20
2009-01-1332
Toyota has been evolving a hybrid system since introducing the first mass-production hybrid vehicle in 1997 in response to the increasing automotive-related issues of CO2 emissions, energy security, and urban air pollution. This paper describes a newly developed hybrid system design and its performance. This system was developed with the main purpose to improve fuel consumption, especially for better real world fuel consumption; and to enhance its compatibility with multiple vehicle adoption by downsizing and reducing the weight of its components. At the same time, the hybrid system achieved improved power performance while satisfying stringent emission regulations in the world.
Technical Paper

Development of an Abdominal Deformation Measuring System for Hybrid III Dummy

1994-11-01
942223
A new abdominal deformation measuring system for Hybrid III dummy has been developed in order to evaluate the abdominal injury by using the dummy. From the dynamic abdominal deformation of the dummy, the abdominal compression velocity V, the compression ratio C, and the maximum value of the product VC, expressed as [VC]MAX, can be calculated. This abdominal deformation measuring system consists of an abdominal insert having the same compression characteristics as those of the human body, a dynamic deformation sensor, and an analysis program. The abdominal insert is made of elastic foam rubber and has a shape fitted to Hybrid III. The deformation sensor in a band shape is a thin stainless steel band with 25 strain gauges on it. Each strain gauge measures the curvature on its mounted position. Since the deformation sensor is located along the surface of the dummy abdomen, the sensor deforms as the dummy surface deforms.
Technical Paper

New Technology for Reducing the Power Consumption of Electrically Heated Catalysts

1994-03-01
940464
A new heating strategy for electrically heated catalysts has been developed which reduces power consumption while achieving the desired hydrocarbon conversion. The relationship between catalyst volume and power consumption is presented. Observations of catalytic reactions by a thermoviewer camera and mathematical simulations are used to optimize the heating pattern. Significant reductions in power consumption, while maintaining conversion efficiency, are reported by heating only the front face of the catalyst. However, prior to mass production additional work is required to improve durability, and reliability and to resolve manufacturing issues.
Technical Paper

Development of Three-Way Catalyst with Using Only Pd as Activator

1995-02-01
950257
The Pd only three-way catalyst with Rh as an activator completely removed has been developed. The catalyst has been improved with regards to its thermal stability and its NOx reduction capability in the fuel rich region. These two factors have been known as the weak points of Pd catalyst. The thermal stability of the Pd catalyst was improved by modifying the washcoat alumina to yield a higher thermal stability. On the other hand, the NOx reduction capability was controlled by adding a combination of La and Ba. The developed Pd only three-way catalyst demonstrated the equivalent performance to a current production Pt/Rh catalyst after engine dynamometer aging up to 800°C.
Technical Paper

Development of Shape Optimization Technique Based on The Basis Vector Method

1995-02-01
950575
A practical shape optimization technique is presented. We employed the basis vector method to parameterize the shape of the structural domain that is usually discretized by the finite element method. VMA/GENESIS software, the optimization system with finite element analysis, sensitivity analysis, and numerical optimization capabilities, was used for this study. Various design problems such as body, chassis, and engine parts design are solved to demonstrate the effectiveness and the robustness of the present approach for automotive applications.
Technical Paper

Torque Converter Clutch Slip Control System

1995-02-01
950672
The torque converter clutch slip control system adopted in the Toyota A541E automatic transaxle engages the torque converter clutch by applying a steady slip speed to prevent the torque fluctuation of the engine to be transmitted to the drivetrain while enhancing the transmission efficiency of the torque converter. The feedback controller of the slip speed adopts the H∞ (H-Infinity) control theory which offers a high level of robust stability, and is the first of its kind in a mass produced component. As a result, a highly accurate and reliable system has been realized, contributing to large-scale fuel economy.
Technical Paper

Development of New Concept Three-Way Catalyst for Automotive Lean-Burn Engines

1995-02-01
950809
A new 3-way catalyst with NOx conversion performance for lean-burn engines has been developed. The catalyst oxidizes NOx and stores the resulting nitrate, which is then reduced by HC and CO during engine operation around the stoichiometric air/fuel ratio. Both the composition of the storage component and the particle sizes of the noble metal were optimized. In addition, a special air fuel mixture control has been developed to make the best of the NOx storage-reduction function. The present catalyst showed 90% conversion efficiency and improved fuel economy by 4% in the Japanese 10-15 mode test cycle. The efficiency remained at 60% or more after durability test.
Technical Paper

New Light Weight 3 Liter V6 Toyota Engine with High Output Torque, Good Fuel Economy and Low Exhaust Emission Levels

1995-02-01
950805
A new generation 3.0 liter V6 engine, the 1MZ-FE, has been developed. Through improvement of the basic technical characteristics of each individual component, the 1MZ-FE has achieved compactness, weight reduction and good fuel economy without adding systems or components. This new engine makes use of an aluminum cylinder block, and compared with the previous V6 engine, significant weight reduction of the crankshaft, connecting rods and pistons was achieved while still maintaining a high level of rigidity. To improve fuel economy, friction loss was reduced substantially by reducing the weight of moving parts and improving the surface roughness of sliding parts. The combustion was also improved through better fuel atomization by the air-assisted fuel injector and modification of the combustion chamber shape. Through these improvements the 1MZ-FE has achieved a weight reduction of approximately 20% and far greater vehicle fuel economy than before.
Technical Paper

Development of an On-Board Type Oil Deterioration Sensor

1993-10-01
932840
According to the principle of pH measurement, an on-board type engine oil deterioration sensor has been developed. The developed sensor is composed of a Pb and oxidized stainless steel electrodes. The sensor signal shows a good linear relationship to the quasi-pH value of the oil. Especially in the region where the oil deterioration proceeds, the remaining basic additives in the oil is easily estimated from the sensor signal.
Journal Article

Development of Exhaust and Evaporative Emissions Systems for Toyota THS II Plug-in Hybrid Electric Vehicle

2010-04-12
2010-01-0831
Exhaust and evaporative emissions systems have been developed to match the characteristics and usage of the Toyota THS II plug-in hybrid electric vehicle (PHEV). Based on the commercially available Prius, the Toyota PHEV features an additional external charging function, which allows it to be driven as an electric vehicle (EV) in urban areas, and as an hybrid electric vehicle (HEV) in high-speed/high-load and long-distance driving situations. To reduce exhaust emissions, the conventional catalyst warm up control has been enhanced to achieve emissions performance that satisfies California's Super Ultra Low Emissions Vehicle (SULEV) standards in every state of battery charge. In addition, a heat insulating fuel vapor containment system (FVS) has been developed using a plastic fuel tank based on the assumption that such a system can reduce the diffusion of vapor inside the fuel tank and the release of fuel vapor in to the atmosphere to the maximum possible extent.
Journal Article

High Concentration Ethanol Effect on SI Engine Emission

2010-04-12
2010-01-1268
From the energy security and CO2 reduction point of view, much attention has been paid to the usage of bio-fuel. Recently, highly concentrated ethanol is used in some areas (“E85”; 85% ethanol and 15% gasoline in North America and Sweden, and “ethanol”; 93% ethanol and 7% water in Brazil). In these regions, Flexible Fuel Vehicles FFVs are being introduced that are capable of using fuels with a wide range of ethanol concentrations. Advantages of highly concentrated ethanol in internal combustion engine applications are higher thermal efficiency obtained due to higher octane number, and a reduction of nitrogen oxides due to lower combustion temperatures On the other hand, the latent heat of vaporization for ethanol is greater than gasoline, causing poor cold startability and high NMOG emissions. This paper examines the effect of highly concentrated ethanol on exhaust emissions at cold start in a SI- engine.
Technical Paper

Development of High-Strength Aluminum Piston Material

2010-04-12
2010-01-0220
Mass reduction of parts is growing in importance as a means for reducing CO2 emissions from vehicles.The aim of the present research was to contribute to further mass reduction of pistons by developing a new aluminum casting material with highest level of fatigue strength. This goal was achieved using a development concept of creating a homogeneous structure in which Ti was added to create a fine structure and appropriate quantities of Fe and Mn were added to form a compound that is stable at high temperatures. Stand-alone tests of prototype pistons fabricated using the developed material show that the material is 14% stronger than the conventional material, thereby enabling increases in power and mass reduction.
Journal Article

Development of Clean Diesel NOx After-treatment System with Sulfur Trap Catalyst

2010-04-12
2010-01-0303
Diesel engines with relatively good fuel economy are known as an effective means of reducing CO₂ emissions. It is expected that diesel engines will continue to expand as efforts to slow global warming are intensified. Diesel particulate and NOx reduction system (DPNR), which was first developed in 2003 for introduction in the Japanese and European markets, shows high purification performance which can meet more stringent regulations in the future. However, it is poisoned by sulfur components in exhaust gas derived from fuel and lubricant. We then developed the sulfur trap DPNR with a sulfur trap catalyst that traps sulfur components in the exhaust gas. High purification performance could be achieved with a small amount of platinum group metal (PGM) due to prevention of sulfur poisoning and thermal deterioration.
Journal Article

Simultaneous Reduction of NOx and PM in Diesel Exhaust Based on Electrochemical Reaction

2010-04-12
2010-01-0306
The emission regulations for diesel engines are continually becoming stricter to reduce pollution and conserve energy. To meet these increasingly stringent regulations, a new exhaust after-treatment device is needed. Recently, the authors proposed the simultaneous electrochemical reduction (ECR) system for diesel particulate matter (PM) and NOx. In this method, a gas-permeable electrochemical cell with a porous solid oxide electrolyte is used for PM filtering on the anode. Alkaline earth metal is coated on the cathode for NOx storage. Application of voltage to both electrodes enables the simultaneous reduction of PM and NOx by the forced flow of oxygen ions from the cathode to the anode (oxygen pumping). In this study, the basic characteristics of the ECR system were investigated, and a disk-shaped electrochemical cell was evaluated.
Technical Paper

Development of High Accuracy Rear A/F Sensor

2017-03-28
2017-01-0949
New 2A/F systems different from usual A/F-O2 systems are being developed to cope with strict regulation of exhaust gas. In the 2A/F systems, 2A/F sensors are equipped in front and rear of a three-way catalyst. The A/F-O2 systems are ideas which use a rear O2 to detect exhaust gas leaked from three-way catalyst early and feed back. On the other hand, the 2A/F systems are ideas which use a rear A/F sensor to detect nearly stoichiometric gas discharged from the three-way catalyst accurately, and to prevent leakage of exhaust gas from the three-way catalyst. Therefore, accurate detection of nearly stoichiometric gas by the rear A/F sensor is the most importrant for the 2A/F systems. In general, the A/F sensors can be classified into two types, so called, one-cell type and two-cell type. Because the one-cell type A/F sensors don’t have hysteresis, they have potential for higher accuracy.
Technical Paper

The Color Specification of Surrogate Roadside Objects for the Performance Evaluation of Roadway Departure Mitigation Systems

2018-04-03
2018-01-0506
Roadway departure mitigation systems for helping to avoid and/or mitigate roadway departure collisions have been introduced by several vehicle manufactures in recent years. To support the development and performance evaluation of the roadway departure mitigation systems, a set of commonly seen roadside surrogate objects need to be developed. These objects include grass, curbs, metal guardrail, concrete divider, and traffic barrel/cones. This paper describes how to determine the representative color of these roadside surrogates. 24,762 locations with Google street view images were selected for the color determination of roadside objects. To mitigate the effect of the brightness to the color determination, the images not in good weather, not in bright daylight and under shade were manually eliminated. Then, the RGB values of the roadside objects in the remaining images were extracted.
Technical Paper

Long-Term Evolution of Straight Crossing Path Crash Occurrence in the U.S. Fleet: The Potential of Intersection Active Safety Systems

2019-04-02
2019-01-1023
Intersection collisions currently account for approximately one-fifth of all crashes and one-sixth of all fatal crashes in the United States. One promising method of mitigating these crashes and fatalities is to develop and install Intersection Advanced Driver Assistance Systems (I-ADAS) on vehicles. When an intersection crash is imminent, the I-ADAS system can either warn the driver or apply automated braking. The potential safety benefit of I-ADAS has been previously examined based on real-world cases drawn from the National Motor Vehicle Crash Causation Survey (NMVCCS). However, these studies made the idealized assumption of full installation in all vehicles of a future fleet. The objective of this work was to predict the reduction in Straight Crossing Path (SCP) crashes due to I-ADAS systems in the United States over time. The proportion of new vehicles with I-ADAS was modeled using Highway Loss Data Institute (HLDI) fleet penetration predictions.
X