Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Development of CFD Inverse Analysis Technology Using the Transient Adjoint Method and Its Application to Engine In-Cylinder Flow

2016-04-05
2016-01-0607
Conventional CFD-based shape optimization technology that uses parametric shape modification and optimal solutions searching algorithms has the two problems: (1) outcome of optimized shapes depend on the selection of design parameters made by the designer, and (2) high computational costs. To resolve those problems, two innovative inverse analysis technologies based on the Adjoint Method were developed in previous study: surface geometry deformation sensitivity analysis to identify the locations to be modified, and topology optimization to generate an optimal shape for maximizing the cost function in the constrained design space. However, these technologies are only applicable to steady flows. Since most flows in a vehicle (such as engine in-cylinder flow) are transient, a practical technology for surface geometry sensitivity analysis has been developed based on the Transient Adjoint Method.
Technical Paper

Modeling of Wall Impinging Behavior with a Fan Shaped Spray

2003-05-19
2003-01-1841
The experiment-based droplet impinging breakup model was applied to a fan shaped spray and the impinging behavior was analyzed quantitatively. Evaluation of the quantitative results with validation tests verified the following. The model enables prediction of fan shaped spray thickness after impingement caused by the breakup of fuel droplets, which could not be represented with the Wall-Jet model, widely used at present. Fuel film movement on a wall is negligible when the injection pressure of the fan shaped spray is high and the spray travelling length is not too short. The proposed heat transfer coefficient between fuel film and the wall is too small to represent the vaporizing rate of the fuel film.
X