Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Analysis of Unburned Hydrocarbon Generated from Wall under Lean Combustion

2020-04-14
2020-01-0295
Combustion of a lean air-fuel mixture diluted with a large amount of air or Exhaust Gas Recirculation (EGR) gas is one of the important technologies that can reduce thermal NOx and improve gasoline engine fuel economy by reducing cooling loss. On the other hand, lean combustion increases unburned Hydro Carbon (HC) and unburned loss compared to stoichiometric combustion. This is because lean combustion reduces the burning rate of the air-fuel mixture and forms a thick quenching layer near the wall surface. In this study, the relationship between the thickness of the unburned HC and the excess air ratio is analyzed using Laser Induced Fluorescence (LIF) method and Computational Fluid Dynamic (CFD) of combustion. The HC distribution near the engine liner when the excess air ratio is increased is investigated by LIF. As a result, it is found that the quenching distance of the flame in the cylinder is larger for lean conditions than the general single-wall quenching relationship.
Technical Paper

Analysis of EGR Cyclic Variations in a Direct Injection Gasoline Engine by Using Raman Scattering Method

2002-05-06
2002-01-1646
The Raman scattering method has been developed for the simultaneous, cycle by cycle measurement of HC, O2, H2O, and N2 in a direct injection gasoline engine with EGR. By using the Raman scattering method, the effect of EGR on stratified charge combustion can be investigated in a direct injection SI gasoline engine. The results show that (1) at the compression stroke homogeneous EGR gas exists, (2) variation of component mass fraction of EGR (qualitative fluctuation) introduced in the previous combustion cycle is the primary reason for EGR fluctuation, (3) under normal operating conditions, EGR fluctuation (component mass fraction and quantitative fluctuation) doesn't influence on the combustion fluctuation at the stratified charge operation.
Technical Paper

Development of CFD Method for Spray Shape Estimation

2016-10-17
2016-01-2198
Computational fluid dynamic (CFD) is widely used to develop engine combustion. Especially the in-cylinder spray calculation is important in order to resolve the issues of direct injection gasoline engines (e.g., particulate matter (PM) and oil dilution caused by fuel wetting on the cylinder walls). Conventional spray calculation methods require fitting based on measurements of spray characteristics such as penetration and droplet diameter (i.e., the Sauter mean diameter (SMD)). Particularly in the case of slit nozzle shapes that widen from the inlet to the outlet to form a fan-shaped spray, fitting the shape of spray is a complex procedure because the flow inside the nozzle is not uniform. In response, a new calculation method has been developed that eliminates the need for spray shape fitting by combining calculations of the Eulerian multiphase and the Lagrangian multiphase.
Technical Paper

Development of Quantitative Fuel Film Distribution Measurement by LIEF Technique and Application to Gasoline Spray

2020-04-14
2020-01-1159
From the point of global and local environment, internal combustion engine is facing the need for significant improvement of exhaust emission. Especially, important is the reduction of unburned hydrocarbon (HC) from fuel film on liner under cold condition. In this study, at first, quantitative fuel film measurement technique by using Laser Induced Exciplex Fluorescence (LIEF) was developed. For the light source, 4th harmonic pulse yttrium aluminum garnet (YAG) laser (266nm) was used. For the tracer, the combination of N,N-Dimethylaniline (DMA) and naphthalene was used and quantitative concentration was decided by calibration test. With LIEF, the distribution of fuel film can be obtained by measuring the fluorescence only from the liquid phase. In order to evaluate the effect of fuel film on exhaust HC emission from engine, the film distribution was measured using quartz glass liner. For the injector, a prototype 6-hole gasoline injector was used.
X