Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Tire and Road Input Modeling for Low-Frequency Road Noise Prediction

2011-05-17
2011-01-1690
This paper presents a modeling method for prediction of low-frequency road noise in a steady-state condition where rotating tires are excited by actual road profile undulation input. The proposed finite element (FE) tire model contains not only additional geometric stiffness related to inflation pressure and axle load but also Coriolis force and centrifugal force effects caused by tire rotation for precise road noise simulation. Road inputs act on the nodes of each rib in the contact patch of the stationary tire model and move along them at the driving velocity. The nodes are enforced to displace in frequency domain based on the measured road profile. Tire model accuracy was confirmed by the spindle forces on the rotating chassis drum up to 100Hz where Coriolis force effect should be considered. Full vehicle simulation results showed good agreement with the vibration measurement of front/rear suspension at two driving velocities.
Technical Paper

Vehicle Interior Noise and Vibration Reduction Method Using Transfer Function of Body Structure

2011-05-17
2011-01-1692
To reduce interior noise effectively in the vehicle body structure development process, noise and vibration engineers have to first identify the portions of the body that have high sensitivity. Second, the necessary vibration characteristics of each portion must be determined, and third, the appropriate body structure for achieving the target performance of the vehicle must be realized within a short development timeframe. This paper proposes a new method based on the substructure synthesis method which is effective up to 200Hz. This method primarily utilizes equations expressing the relationship between driving point inertance change at arbitrary body portions and the corresponding sound pressure level (SPL) variation at the occupant's ear positions under external force. A modified system equation was derived from the body transfer functions and equation of motion by adding a virtual dynamic stiffness expression into the dynamic stiffness matrix of the vehicle.
X