Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Toward Requirements for a Web-based Icing Training Program for Flight Dispatchers

2003-06-16
2003-01-2151
The Icing Branch at NASA Glenn Research Center has funded an exploratory effort to identify requirements for developing a flight dispatcher-centered web-based icing training program that would be available for all airspace users. Through research and discussions with personnel at airlines, target areas were identified as influences on the requirements for the training system: 1 Flight dispatchers' icing related judgments and decision-making; 2 Certification, new hire and recurrent flight dispatcher training with respect to icing; 3 Icing related weather sources and the problems that flight dispatchers may have in their interpretation; 4 Pedagogical strategies (such as flight dispatcher-centered scenario-based approaches) for delivering flight dispatcher training content; and 5 Concerns/constraints with respect to web-based training for flight dispatchers.
Technical Paper

Correction of Beam Steering for Optical Measurements in Turbulent Reactive Flows

2021-04-06
2021-01-0428
The application of optical diagnostics in turbulent reactive flows often suffers from the beam steering (BS) effects, resulting in degraded image quality and/or measurement accuracy. This work investigated a method to correct the BS effects to improve the accuracy of optical diagnostics, with particle imagine velocimetry (PIV) measurements on turbulent reactive flames as an example. The proposed method used a guiding laser to correct BS. Demonstration in laboratory turbulent flames showed promising results where the accuracy of PIV measurement was significantly enhanced. Applicability to more complicated and practical situations are discussed.
Technical Paper

Detached Eddy Simulation on a Swept Hybrid Model in the IRT

2015-06-15
2015-01-2122
In recent years, there has been a growing desire to incorporate computational methods into aircraft icing certification practices. To improve understanding of ice shapes, a new experimental program in the NASA Icing Research Tunnel (IRT) will investigate swept hybrid models which are very large relative to the test section and are intended to operate at high lift coefficients. The present computations were conducted to help plan the experiments and to ascertain any effects of flow separation and unsteady forces. As they can be useful in robustly and accurately predicting large separation regions and capturing flow unsteadiness, a Detached Eddy Simulation (DES) approach has been adopted for simulating the flow over these large high-lift wing sections. The DES methodology was first validated using experimental data from an unswept NACA 0012 airfoil with leading-edge ice accretion, showing reasonable performance.
X