Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Ford 2011 6.7L Power Stroke® Diesel Engine Combustion System Development

2012-02-16
This session focuses on kinetically controlled combustion. Experimental and simulation studies pertaining to various means of controlling combustion are welcome. Examples are research studies dealing with temperature and composition distribution inside the cylinder and their impact on heat release process. Studies clarifying the role of fuel physical and chemical properties in autoignition are also welcome. Presenter Hanho Yun, General Motors Company
Video

Future Development of EcoBoost Technology

2012-05-10
Combustion engines are typically only 20-30% efficient at part-load operating conditions, resulting in poor fuel economy on average. To address this, LiquidPiston has developed an improved thermodynamics cycle, called the High-Efficiency Hybrid Cycle (HEHC), which optimizes each process (stroke) of the engine operation, with the aim of maximizing fuel efficiency. The cycle consists of: 1) a high compression ratio; 2) constant-volume combustion, and 3) over-expansion. At a modest compression ratio of 18:1, this cycle offers an ideal thermodynamic efficiency of 74%. To embody the HEHC cycle, LiquidPiston has developed two very different rotary engine architectures ? called the ?M? and ?X? engines. These rotary engine architectures offer flexibility in executing the thermodynamics cycle, and also result in a very compact package. In this talk, I will present recent results in the development of the LiquidPiston engines. The company is currently testing 20 and 40 HP versions of the ?M?
Journal Article

The Effects of Sulfur Poisoning and Desulfation Temperature on the NOx Conversion of LNT+SCR Systems for Diesel Applications

2010-04-12
2010-01-0300
A laboratory study was performed to assess the effects of sulfur poisoning and desulfation temperature on the NO conversion of a LNT+(Cu/SCR) in-situ system. Four LNT+(Cu/SCR) systems were aged for 4.5 hours without sulfur at 600, 700, 750, and 800°C using A/F ratio modulations to represent 23K miles of desulfations at different temperatures. NO conversion tests were performed on the LNT alone and on the LNT+SCR system using a 60 s lean/5 s rich cycle. The catalysts were then sulfur-poisoned at 400°C and desulfated four times and re-evaluated on the 60/5 tests. This test sequence was repeated 3 more times to represent 100K miles of desulfations. After simulating 23K miles of desulfations, the Cu-based SCR catalysts improved the NO conversion of the LNT at low temperatures (e.g., 300°C), although the benefit decreased as the desulfation temperature increased from 600°C to 800°C.
Journal Article

Effects of Fuel Cell Material Properties on Water Management Using CFD Simulation and Neutron Imaging

2010-04-12
2010-01-0934
Effects of fuel cell material properties on water management were numerically investigated using Volume of Fluid (VOF) method in the FLUENT. The results show that the channel surface wettability is an important design variable for both serpentine and interdigitated flow channel configurations. In a serpentine air flow channel, hydrophilic surfaces could benefit the reactant transport to reaction sites by facilitating water transport along channel edges or on channel surfaces; however, the hydrophilic surfaces would also introduce significantly pressure drop as a penalty. For interdigitated air flow channel design, it is observable that liquid water exists only in the outlet channel; it is also observable that water distribution inside GDL is uneven due to the pressure distribution caused by interdigitated structure. An in-situ water measurement method, neutron imaging technique, was used to investigate the water behavior in a PEM fuel cell.
Journal Article

Development of the Combustion System for a Flexible Fuel Turbocharged Direct Injection Engine

2010-04-12
2010-01-0585
Gasoline turbocharged direct injection (GTDI) engines, such as EcoBoost™ from Ford, are becoming established as a high value technology solution to improve passenger car and light truck fuel economy. Due to their high specific performance and excellent low-speed torque, improved fuel economy can be realized due to downsizing and downspeeding without sacrificing performance and driveability while meeting the most stringent future emissions standards with an inexpensive three-way catalyst. A logical and synergistic extension of the EcoBoost™ strategy is the use of E85 (approximately 85% ethanol and 15% gasoline) for knock mitigation. Direct injection of E85 is very effective in suppressing knock due to ethanol's high heat of vaporization - which increases the charge cooling benefit of direct injection - and inherently high octane rating. As a result, higher boost levels can be achieved while maintaining optimal combustion phasing giving high thermal efficiency.
Journal Article

Laboratory and Vehicle Demonstration of “2nd-Generation” LNT + in-situ SCR Diesel NOx Emission Control Systems

2010-04-12
2010-01-0305
This study extends research previously reported from our laboratory [SAE 2009-01-0285] on diesel NOx control utilizing a new generation of Lean NOx Trap (LNT) plus in-situ Selective Catalytic Reduction (SCR) catalyst systems. Key findings from this work include 1) evidence for a “non-ammonia” reduction pathway over the SCR catalyst (in addition to the conventional ammonia pathway), 2) high NOx conversions utilizing LNT formulations with substantially lower platinum group metal (PGM) loadings than utilized in earlier systems, 3) ability of the downstream SCR catalyst to maintain high overall system NOx efficiency with aged LNTs, and 4) effectiveness of both Cu- and Fe-zeolite SCR formulations to enhance overall system NOx efficiency. FTP NOx conversion efficiencies in excess of 95% were obtained on two light-duty vehicle platforms with lab-aged catalyst systems, thus showing potential of the LNT+SCR approach for achieving the lowest U.S. emissions standards
Journal Article

Instabilities at the Low-Flow Range of a Turbocharger Compressor

2013-05-13
2013-01-1886
The acoustic and performance characteristics of an automotive centrifugal compressor are studied on a steady-flow turbocharger test bench, with the goal of advancing the current understanding of compression system instabilities at the low-flow range. Two different ducting configurations were utilized downstream of the compressor, one with a well-defined plenum (large volume) and the other with minimized (small) volume of compressed air. The present study measured time-resolved oscillations of in-duct and external pressure, along with rotational speed. An orifice flow meter was incorporated to obtain time-averaged mass flow rate. In addition, fast-response thermocouples captured temperature fluctuations in the compressor inlet and exit ducts along with a location near the inducer tips.
Journal Article

Investigation and Development of Fuel Slosh CAE Methodologies

2014-04-01
2014-01-1632
When a vehicle with a partially filled fuel tank undergoes sudden acceleration, braking, turning or pitching motion, fuel sloshing is experienced. It is important to establish a CAE methodology to accurately predict slosh phenomenon. Fuel slosh can lead to many failure modes such as noise, erroneous fuel indication, irregular fuel supply at low fuel level and durability issues caused by high impact forces on tank surface and internal parts. This paper summarizes activities carried out by the fuel system team at Ford Motor Company to develop and validate such CAE methodology. In particular two methods are discussed here. The first method is Volume Of Fluid (VOF) based incompressible multiphase Eulerian transient CAE method. The CFD solvers used here are Star CD and Star CCM+. The second method incorporates Fluid-Structure interaction (FSI) using Arbitrary Lagrangian-Eulerian (ALE) formulation.
Journal Article

Towards an Optimum Aftertreatment System Architecture

2015-01-14
2015-26-0104
Aftertreatment system design involves multiple tradeoffs between engine performance, fuel economy, regulatory emission levels, packaging, and cost. Selection of the best design solution (or “architecture”) is often based on an assumption that inherent catalyst activity is unaffected by location within the system. However, this study acknowledges that catalyst activity can be significantly impacted by location in the system as a result of varying thermal exposure, and this in turn can impact the selection of an optimum system architecture. Vehicle experiments with catalysts aged over a range of mild to moderate to severe thermal conditions that accurately reflect select locations on a vehicle were conducted on a chassis dynamometer. The vehicle test data indicated CO and NOx could be minimized with a catalyst placed in an intermediate location.
Journal Article

NVH Development of the Ford 2.7L 4V-V6 Turbocharged Engine

2015-06-15
2015-01-2288
A new turbocharged 60° 2.7L 4V-V6 gasoline engine has been developed by Ford Motor Company for both pickup trucks and car applications. This engine was code named “Nano” due to its compact size; it features a 4-valves DOHC valvetrain, a CGI cylinder block, an Aluminum ladder, an integrated exhaust manifold and twin turbochargers. The goal of this engine is to deliver 120HP/L, ULEV70 emission, fuel efficiency improvements and leadership level NVH. This paper describes the upfront design and optimization process used for the NVH development of this engine. It showcases the use of analytical tools used to define the critical design features and discusses the NVH performance relative to competitive benchmarks.
Journal Article

Flow-Induced Whistle in the Joint of Thermal Expansion Valve and Suction Tube in Automotive Refrigerant System

2015-06-15
2015-01-2275
In the thermal expansion valve (TXV) refrigerant system, transient high-pitched whistle around 6.18 kHz is often perceived following air-conditioning (A/C) compressor engagements when driving at higher vehicle speed or during vehicle acceleration, especially when system equipped with the high-efficiency compressor or variable displacement compressor. The objectives of this paper are to conduct the noise source identification, investigate the key factors affecting the whistle excitation, and understand the mechanism of the whistle generation. The mechanism is hypothesized that the whistle is generated from the flow/acoustic excitation of the turbulent flow past the shallow cavity, reinforced by the acoustic/structural coupling between the tube structural and the transverse acoustic modes, and then transmitted to evaporator. To verify the mechanism, the transverse acoustic mode frequency is calculated and it is coincided to the one from measurement.
Journal Article

Effect of Aerodynamically Induced Pre-Swirl on Centrifugal Compressor Acoustics and Performance

2015-06-15
2015-01-2307
The effect of aerodynamically induced pre-swirl on the acoustic and performance characteristics of an automotive centrifugal compressor is studied experimentally on a steady-flow turbocharger facility. Accompanying flow separation, broadband noise is generated as the flow rate of the compressor is reduced and the incidence angle of the flow relative to the leading edge of the inducer blades increases. By incorporating an air jet upstream of the inducer, a tangential (swirl) component of velocity is added to the incoming flow, which improves the incidence angle particularly at low to mid-flow rates. Experimental data for a configuration with a swirl jet is then compared to a baseline with no swirl. The induced jet is shown to improve the surge line over the baseline configuration at all rotational speeds examined, while restricting the maximum flow rate. At high flow rates, the swirl jet increases the compressor inlet noise levels over a wide frequency range.
Journal Article

Laboratory and Vehicle Demonstration of “2nd-Generation” LNT + in-situ SCR Diesel Emission Control Systems

2011-04-12
2011-01-0308
Diesel NOx emissions control utilizing combined Lean NOx Trap (LNT) and so-called passive or in-situ Selective Catalytic Reduction (SCR) catalyst technologies (i.e. with reductant species generated by the LNT) has been the subject of several previous papers from our laboratory [ 1 - 2 ]. The present study focuses on hydrocarbon (HC) emissions control via the same LNT+SCR catalyst technology under FTP driving conditions. HC emissions control can be as challenging as NOx control under both current and future federal and California/Green State emission standards. However, as with NOx control, the combined LNT+SCR approach offers advantages for HC emission control over LNT-only aftertreatment. The incremental conversion obtained with the SCR catalyst is shown, both on the basis of vehicle and laboratory tests, to result primarily from HC adsorbed on the SCR catalyst during rich LNT purges that reacts during subsequent lean engine operation.
Journal Article

Material Selection During Early Design Phase Using Simplified Models

2011-04-12
2011-01-0526
Optimal material selection for a part becomes quite challenging with dynamically changing data from various sources. Multiple manufacturing locations with varying supplier capabilities add to the complexity. There is need to balance product attribute requirements with manufacturing feasibility, cost, sourcing, and vehicle program strategies. The sequential consideration of product attribute, manufacturing, and sourcing aspects tends to result in design churns. Ford R&A is developing a web based material recommender tool to help engineers with material selection integrating sourcing, manufacturing, and design considerations. This tool is designed to filter the list of materials for a specific part and provide a prioritized list of materials; and allow engineers to do weight and cost trade-off studies. The initial implementation of this material recommender tool employs simplified analytical calculators for evaluation of structural performance metrics of parts.
Journal Article

Centralized Torque Controller for a Nonminimum Phase Phenomenon in a Powersplit HEV

2012-04-16
2012-01-1026
Torque controls for the engine and electric motors in a Powersplit HEV are keys to the success of balancing fuel economy, driveability, and battery power control. The electric variable transmission (EVT) offers an opportunity to let the engine operate at system-optimal fuel efficient points independently of any load. Existing work shows such a benefit can be realized through a decentralized control structure that translates the driver inputs to independent engine torque and speed control. However, our study shows that the decentralized control structures have a fundamental limitation that arises from the nonminimum phase (NMP) zero in the transfer function from the driver power command to the generator torque change rate, and thus not only is it difficult to obtain smooth generator torque but also it can cause violations on battery power limits during transients. Additionally, it adversely affects the driveability due to the generator torque transients reflected at the ring gear.
Journal Article

Side Crash Pressure Sensor Prediction: An Improved Corpuscular Particle Method

2012-04-16
2012-01-0043
In an attempt to predict the responses of side crash pressure sensors, the Corpuscular Particle Method (CPM) was adopted and enhanced in this research. Acceleration-based crash sensors have traditionally been used extensively in automotive industry to determine the air bag firing time in the event of a vehicle accident. The prediction of crash pulses obtained from the acceleration-based crash sensors by using computer simulations has been very challenging due to the high frequency and noisy responses obtained from the sensors, especially those installed in crash zones. As a result, the sensor algorithm developments for acceleration-based sensors are largely based on prototype testing. With the latest advancement in the crash sensor technology, side crash pressure sensors have emerged recently and are gradually replacing acceleration-based sensor for side impact applications.
Journal Article

Hydrogen DI Dual Zone Combustion System

2013-04-08
2013-01-0230
Internal combustion (IC) engines fueled by hydrogen are among the most efficient means of converting chemical energy to mechanical work. The exhaust has near-zero carbon-based emissions, and the engines can be operated in a manner in which pollutants are minimal. In addition, in automotive applications, hydrogen engines have the potential for efficiencies higher than fuel cells.[1] In addition, hydrogen engines are likely to have a small increase in engine costs compared to conventionally fueled engines. However, there are challenges to using hydrogen in IC engines. In particular, efficient combustion of hydrogen in engines produces nitrogen oxides (NOx) that generally cannot be treated with conventional three-way catalysts. This work presents the results of experiments which consider changes in direct injection hydrogen engine design to improve engine performance, consisting primarily of engine efficiency and NOx emissions.
Technical Paper

Biaxial Torsion-Bending Fatigue of SAE Axle Shafts

1991-02-01
910164
Variable amplitude torsion, bending, and combined torsion and bending fatigue tests were performed on an axle shaft. The moment inputs used were taken from the respective history channels of a cable log skidder vehicle axle. Testing results indicated that combined variable amplitude loading lives were shorter than the lives of specimens subjected to bending or torsion alone. Calculations using strain rosette readings indicated that principle strains were most active around specific angles but also occurred with lesser magnitudes through a wider angular range. Over the course of a biaxial test, cyclic creep narrowly limited the angles and magnitudes of the principal strains. This limitation was not observed in the calculated principal stress behavior. Simple life predictions made on the measured strain gage histories were non-conservative in most cases.
Technical Paper

High Speed Fuel Injection System for 2-Stroke D.I. Gasoline Engine

1991-02-01
910666
Two-stroke gasoline engines are known to benefit from using in-cylinder fuel injection which improves their ability to meet the strict fuel economy and exhaust emissions requirements. A conventional method of in-cylinder fuel injection involves application of plunger-type positive displacement pumps. Two-stroke engines are usually smaller and lighter than their 4-stroke counterparts of equal power and need a pump that should also be small and light and, preferably, simple in construction. Because a 2-stroke engine fires every crankshaft revolution, its fuel injection pump must run at crankshaft speed (twice the speed of a 4-stroke engine pump). An electronically controlled fuel injection system has been designed to satisfy the needs of a small automotive 2-stroke engine capable of running at speeds of up to 6000 rpm.
Technical Paper

A Development Process to Improve Vehicle Sound Quality

1991-05-01
911079
Vehicle sound quality has become an important basic performance requirement. Traditionally, automobile noise studies were focused on quietness. It is now necessary for the automobile to be more than quiet. The sound must be pleasing. This paper describes a development process to improve both vehicle noise level and sound quality. Formal experimental design techniques were utilized to quantify various hardware effects. A-weighted sound pressure level, Speech Intelligibility, and Composite Rating of Preference were the three descriptors used to characterize the vehicle's sound quality. Engineering knowledge augmented with graphical and statistical techniques were utilized during data analysis. The individual component contributions to each of the sound quality descriptors were also quantified in this study.
X