Refine Your Search

Topic

Author

Search Results

Video

Teardown-Based Cost Assessment for Use in Setting Greenhouse Gas Emissions Standards

2012-06-18
The U.S. Environmental Protection Agency (EPA) contracted with FEV, Inc. to estimate the per-vehicle cost of employing selected advanced efficiency-improving technologies in light-duty motor vehicles. The development of transparent, reliable cost analyses that are accessible to all interested stakeholders has played a crucial role in establishing feasible and cost effective standards to improve fuel economy and reduce greenhouse gas (GHG) emissions. The FEV team, together with engineering staff from EPA's National Vehicle and Fuel Emissions Laboratory, and FEV's subcontractor, Munro & Associates, developed a robust costing methodology based on tearing down, to the piece part level, relevant systems, sub-systems, and assemblies from vehicles ?with and without? the technologies being evaluated.
Technical Paper

Investigation into the Vehicle Exhaust Emissions of High Percentage Ethanol Blends

1995-02-01
950777
Six in-use vehicles were tested on a baseline gasoline and nine gasoline/ethanol blends to determine the effect of ethanol content in fuels on automotive exhaust emissions and fuel economy. The baseline gasoline was representative of average summer gasoline and served as the base from which the other fuels were blended. For the majority of the vehicles, total hydrocarbon, and carbon monoxide exhaust emissions as well as fuel economy decreased while NOx and acetaldehyde exhaust emissions increased as the ethanol content in the test fuel increased. Formaldehyde and carbon dioxide emissions were relatively unaffected by the addition of ethanol. The emission responses to the increased fuel oxygen levels were consistent with what would be expected from leaning-out the air/fuel ratio for a spark ignition engine. The results are shown graphically and a linear regression is performed utilizing the method of least squares to investigate statistically significant trends in the data.
Technical Paper

Emissions from Catalyst Cars Beyond 50 000 Miles and the Implications for the Federal Motor Vehicle Control Program

1978-02-01
780027
High mileage vehicles (in excess of 50,000 miles) contribute more than half of all vehicular emissions. With the new catalytic converter equipped cars, the proportional contribution of these vehicles may be even higher than for pre-catalyst vehicles. Thus a substantial portion of motor vehicle related air pollution may be caused by vehicles not subject to the manufacturer directed provisions of the Clean Air Act. This paper presents a modeling effort based on hypotheses and some preliminary data, and suggests some alternatives to combat this potential problem.
Technical Paper

Light Duty Automotive Fuel Economy… Trends thru 1983

1983-02-01
830544
This, the eleventh in a series of Papers on EPA fuel economy trends, emphasizes the current Model Year (1983) as usual, but also gives increased emphasis to trends in vehicle technology, including catalyst and transmission subclasses. Final “CAFE”* production volumes and MPG figures have been used to update the data bases through the 1980 Model Year, and an analytic method used in the past to allocate year-to-year fleet MPG changes to specific causes, such as weight mix shifts, has been reinstituted. Conclusions are presented on the relation between fuel economy and emission standards, catalyst types, and transmission types.
Technical Paper

Toxicologically Acceptable Levels of Methanol and Formaldehyde Emissions from Methanol-Fueled Vehicles

1984-10-01
841357
The increased interest in use of methanol makes it important to determine what levels of methanol and formaldehyde emissions may be acceptable. This paper reviews the available health data for methanol and formaldehyde to define what approximate ranges of concentrations, termed ranges of concern, could be acceptable from a toxicological viewpoint. Air quality models are then used to predict the in-use fleet average exhaust emission levels in localized situations (heavily impacted by mobile sources) corresponding to these ranges of concern. Using predicted fleet compositions, approximate target emission levels are given for the light-duty portion of the fleet which could yield these fleet averages. Finally, there is a brief summary of available methanol and formaldehyde emissions data from neat methanol-fueled vehicles which are compared to the target levels.
Technical Paper

A Study of the Potential Impact of Some Unregulated Motor Vehicle Emissions

1983-06-06
830987
Studies of emissions from vehicles equipped with catalysts have shown that some unregulated emissions can increase when a catalyst is used. One example of this is sulfuric acid, which has been studied extensively. Other unregulated emissions include ammonia and hydrogen cyanide. In a number of studies, these unregulated pollutant emissions have been measured from light-duty vehicles and heavy-duty engines. These emission levels were used in air quality dispersion models to predict the resultant air quality levels. The ambient concentrations predicted for each pollutant were then compared to suggested concentrations at which adverse health effects may be found to determine if additional monitoring or control would be indicated for these pollutants. It was determined that mobile source emissions of sulfuric acid, hydrogen cyanide, and ammonia do not in general result in ambient levels of concern for the air quality situations studied.
Technical Paper

Light Duty Automotive Trends Through 1986

1986-04-01
860366
This, the fourteenth in this series of papers, examines trends in fuel economy, technology usage and estimated 0 to 60 MPH acceleration time for model year 1986 passenger cars. Comparisons with previous year's data are made for the fleet as a whole and using three measures of vehicle/engine size: number of cylinders, EPA car class, and inertia weight class. Emphasis on vehicle performance and fuel metering has been expanded and analysis of individual manufacturers has been deemphasized; comparisons of the Domestic, European, and Japanese market sectors are given increased emphasis.
Journal Article

Benchmarking a 2016 Honda Civic 1.5-Liter L15B7 Turbocharged Engine and Evaluating the Future Efficiency Potential of Turbocharged Engines

2018-04-03
2018-01-0319
As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty (LD) automotive technologies to support the setting of appropriate national greenhouse gas (GHG) standards and to evaluate the impact of new technologies on in-use emissions, a 2016 Honda Civic with a 4-cylinder 1.5-liter L15B7 turbocharged engine and continuously variable transmission (CVT) was benchmarked. The test method involved installing the engine and its CVT in an engine-dynamometer test cell with the engine wiring harness tethered to its vehicle parked outside the test cell. Engine and transmission torque, fuel flow, key engine temperatures and pressures, and onboard diagnostics (OBD)/Controller Area Network (CAN) bus data were recorded.
Technical Paper

Catalysts for Methanol Vehicles

1987-11-01
872052
A Methanol catalyst test program has been conducted in two phases. The purpose of Phase I was to determine whether a base metal or lightly-loaded noble metal catalyst could reduce Methanol engine exhaust emissions with an efficiency comparable to conventional gasoline engine catalytic converters. The goal of Phase II was the reduction of aldehyde and unburned fuel emissions to very low levels by the use of noble metal catalysts with catalyst loadings higher than those in Phase I. Catalysts tested in Phase I were evaluated as three-way converters as well as under simulated oxidation catalyst conditions. Phase II catalysts were tested as three-way converters only. For Phase I, the most consistently efficient catalysts over the range of pollutants measured were platinum/rhodium configurations. None of the catalysts tested in Phase I were able to meet a NOx level of 1 gram per mile when operated in the oxidation mode.
Technical Paper

Performance of Sequential Port Fuel Injection on a High Compression Ratio Neat Methanol Engine

1987-11-01
872070
A Sequential fuel injection system was fitted to a 2 liter Nissan NAPS-Z engine that had been modified for neat methanol operation. The specific modifications for high compression operation with neat methanol are described, and baseline brake thermal efficiency and engine out emissions are established. Sequential injection operation on neat methanol included varying the beginning of injection between 50°BTDC and 250°ATDC over an equivalence ratio of 0.6 to 0.9. Efficiency and emission results with the Sequential system are compared to those from the base system and from selected references. For the low speed, steady state conditions used in this program, the Sequential system did not show any general improvement in efficiency or emissions. This result is directionally opposite to that observed in one reference. The apparent cause for the divergent results is the absence of mechanisms in this experiment to prevent mixing along the cylinder axis.
Technical Paper

Evaluation of a Passenger Car Equipped with a Direct Injection Neat Methanol Engine

1992-02-01
920196
The cyclic and steady-state vehicle emissions, fuel economy, performance, and cold start behavior of an automobile equipped with a direct injection methanol engine are compared with those of three other comparable vehicles. One of the comparable vehicles was powered by a gasoline-fueled engine, and the other two were Diesels. One of the Diesel-powered vehicles was naturally aspirated and the other was turbocharged. All evaluations were made using the same road load horsepower and equivalent test weight. All the evaluations were conducted at low mileage. The emissions of the methanol vehicle are compared to California low emission vehicle standards, and to the emissions of another methanol vehicle.
Technical Paper

Operating Characteristics of Zirconia Galvanic Cells (Lambda Sensors) in Automotive Closed-Loop Emission Control Systems

1992-02-01
920289
Simple tests were performed to investigate the operating characteristics of zirconia galvanic cells (lambda sensors) in automotive closed loop “three-way” emission control systems. Commercially available cells were exposed to typical gaseous components of exhaust gas mixtures. The voltages generated by the cells were at their maximum values when hydrogen, and, in some instances, carbon monoxide, was available for reaction with atmospheric oxygen that migrated through the cells' ceramic thimbles in ionic form. This dependence of galvanic activity on the availability of these particular reducing agents indicated that the cells were voltaic devices which operated as oxidation/reduction reaction cells, rather than simple oxygen concentration cells.
Technical Paper

Effect of Engine Condition on FTP Emissions and In-Use Repairability

1992-02-01
920822
Twenty in-use vehicles that had failed the I/M test in the State of Michigan were inspected for engine mechanical condition as well as the state of the emission control system. Mass emission tests were conducted before and after repairs to the emission control system. The internal engine condition (i.e., high or low levels of cylinder leakage, or compression difference) showed little effect on the ability of the repaired vehicles to achieve moderate mass emission levels. Nine of the twenty vehicles were recruited after three years, and with the exception of tampering, the original emission control system repairs proved to be durable.
Technical Paper

Evaluation of Heat Storage Technology for Quick Engine Warm-Up

1992-10-01
922244
The Schatz Heat Battery stores excess heat energy from the engine cooling system during vehicle operation. This excess energy may be returned to the coolant upon the ensuing cold start, shortening the engine warm-up period and decreasing cold start related emissions of unburned fuel and carbon monoxide (CO). A Heat Battery was evaluated on a test vehicle to determine its effect on unburned fuel emissions, CO emissions, and fuel economy over the cold start portion (Bag 1) of the Federal Test Procedure (FTP) at 24°C and -7°C ambient conditions. The Heat Battery was mounted in a vehicle fueled alternately with indolene clear (unleaded gasoline) and M85 high methanol blend fuels. Several Heat Battery/coolant flow configurations were evaluated to determine which would result in lowest cold start emissions.
Technical Paper

Resistive Materials Applied to Quick Light-off Catalysts

1989-02-01
890799
The application of resistive materials as part of an exhaust emission control system is presented and discussed. The importance of cold start emissions is emphasized, and results are presented from experiments conducted with two different conductive materials. Most of the testing was conducted using methanol as the fuel, although some tests were run using gasoline-fueled vehicles.
Technical Paper

Exhaust Particulate Matter Emissions from In-Use Passenger Vehicles Recruited in Three Locations: CRC Project E-24

1999-05-03
1999-01-1545
FTP-UDDS (urban dynamometer driving schedule) exhaust particulate matter (PM) emission rates were determined for 361 light-duty gasoline (LDGV) and 49 diesel passenger vehicles ranging in model year (MY) from 1965 to 1997. LDGVs were recruited into four MY categories. In addition, special effort was made to recruit LDGVs with visible smoke emissions, since these vehicles may be significant contributors to the mobile source PM emission inventory. Both light and heavy-duty diesels where included in the passenger diesel test fleet, which was insufficient in size to separate into the same MY categories as the LDGVs. Vehicles were tested as-received in three areas: Denver, Colorado; San Antonio, Texas; and the South Coast Air Quality Management District, California. The average PM emission rates were 3.3, 79.9, 384 and 558 mg/mi for 1991-97 MY LDGVs, pre-1981 LDGVs, smoking LDGVs and the diesel vehicles, respectively.
Technical Paper

Light Duty Automotive Fuel Economy …Trends through 1981

1981-02-01
810386
EPA new-model fuel economy figures are presented for passenger vehicles and light duty trucks (those with GVW ratings up to 8500 lbs). The 1981 models are emphasized, with some comparisons to prior years included. Reader familiarity with the EPA tests, data bases, and analytical methods is assumed. Principal two-way analyses include comparisons of domestic vs. import, gasoline vs. Diesel, and Federal (49-state) vs. California vehicles. Sales fractions for a number of vehicle and engine emission control design features are included. The principal finding is that increased use of newer vehicle and emission control technologies in 1981 has accompanied significant fuel economy gains in spite of the tougher 1981 emission standards.
Technical Paper

Fuel Economy of In-Use Passenger Cars: Laboratory and Road

1981-06-01
810780
This report describes an evaluation of fuel economy of in-use passenger cars conducted by the U.S. Environmental Protection Agency during 1980. A total of 440 vehicles from the 1975-1980 model years were obtained from private owners in several cities. Each vehicle was tested according to the Federal Test Procedure and the Highway Fuel Economy Test. After the laboratory testing, the owners were asked to record their next four fuel purchases on a reply postcard. The results from the survey were analyzed and compared with the test results, estimates by the owner, and the values published in EPA's Gas Mileage Guide.
Technical Paper

The Effect of Diesel Sulfur Content and Oxidation Catalysts on Transient Emissions at High Altitude from a 1995 Detroit Diesel Series 50 Urban Bus Engine

1996-10-01
961974
Regulated emissions (THC, CO, NOx, and PM) and particulate SOF and sulfate fractions were determined for a 1995 Detroit Diesel Series 50 urban bus engine at varying fuel sulfur levels, with and without catalytic converters. When tested on EPA certification fuel without an oxidation catalyst this engine does not appear to meet the 1994 emissions standards for heavy duty trucks, when operating at high altitude. An ultra-low (5 ppm) sulfur diesel base stock with 23% aromatics and 42.4 cetane number was used to examine the effect of fuel sulfur. Sulfur was adjusted above the 5 ppm level to 50, 100, 200, 315 and 500 ppm using tert-butyl disulfide. Current EPA regulations limit the sulfur content to 500 ppm for on highway fuel. A low Pt diesel oxidation catalyst (DOC) was tested with all fuels and a high Pt diesel oxidation catalyst was tested with the 5 and 50 ppm sulfur fuels.
Technical Paper

Life-cycle Management in the Automotive Supply Chain: Results of a Survey of Saturn Tier I Suppliers

2000-04-26
2000-01-1463
Saturn Corporation and its suppliers are partnering with the U.S. Environmental Protection Agency (EPA) Design for the Environment (DfE) Program and the University of Tennessee (UT) Center for Clean Products and Clean Technologies (CCPCT) in a project to develop a model for life-cycle management (LCM). This paper presents key findings from the first phase of the project, a survey by Saturn of its suppliers to determine their interests and needs for a supply chain LCM project, and identifies framework strategies for successful LCM.
X