Refine Your Search




Search Results

Technical Paper

Development of Diesel Engine System with DPF for the European Market

Nissan Motor has put on the European SUV market a 2.2-L direct-injection diesel engine with a diesel particulate filter (DPF) system that complies with the EURO IV emission regulations. This paper describes the DPF system, cooperative control of a variable geometry turbo (VGT) and exhaust gas recirculation (EGR), and a high-accuracy lambda control adopted for this engine. In order to achieve a compact DPF, the high-accuracy lambda control was developed to reduce variation in engine-out particulate matter (PM) emissions. Moreover, the accuracy of the technique for predicting the quantity of PM accumulation was improved for reliable detection of the DPF regeneration. Prediction error for PM accumulation increases during transient operation. Control logic was adopted to correct the PM prediction according to lambda fluctuation detected by an observer for lambda at cylinder under transient operating conditions. The observer is corrected lambda sensor output.
Technical Paper

Microfluidic Simulation of Diesel Exhaust Gas and Soot Oxidation in Diesel Particulate Filter

Particulate matter (PM) including soot in diesel exhaust gas is a serious atmospheric pollutant, and stricter exhaust emission standards are being set in many countries. As one of the key technologies, a diesel particulate filter (DPF) for PM trap in the after-treatment of the exhaust gas has been developed. Typically, the inlet size of filter monolith is about 2 mm, and the thickness of the filter wall is only 0.2 mm, where soot particles are removed. It is impossible to observe the small-scale phenomena inside the filter, experimentally. Then, in the present study, we conducted microfluidic simulation with soot oxidation. Here, a real cordierite filter was used in the simulation. The inner structure of the filter was scanned by a 3D X-ray CT Computed Tomography) technique. The advantage is that it is non-intrusive system, and it has a high spatial resolution in the micrometer.
Journal Article

Connected Vehicle Accelerates Green Driving

After the turn of the century, growing social attention has been paid to environmental concerns, especially the reduction of greenhouse gas emissions and it comes down to a personal daily life concern which will affect the purchasing decision of vehicles in the future. Among all the sources of greenhouse gas emissions, the transportation industry is the primary target of reduction and almost every automotive company pours unprecedented amounts of money to reengineer the vehicle technologies for better fuel efficiency and reduced CO2 emission. Besides those efforts paid for sheer improvements of genuine vehicle technologies, NISSAN testified that “connectivity” with outside servers contributed a lot to reduce fuel consumption, thus the less emission of GHG, with two major factors; 1. detouring the traffic congestions with the support of probe-based real-time traffic information and 2. providing Eco-driving advices for the better driving behavior to prompt the better usage of energy.
Technical Paper

Experimental Studies on a Natural Gas Vehicle

This paper presents the results of several studies conducted on a natural gas vehicle. In one study of engine-out emissions performance, the exhaust emissions of the CNG engine were lower than those of the base gasoline engine. In another study of the conversion characteristics of three-way catalysts, it was found that the conversion efficiency of total hydrocarbons (THCs) was much lower in the lean-mixture region for the NGV. The reduced efficiency was traced to lower conversion and poor reactivity of low-end hydrocarbons and to a higher concentration of H2O.
Technical Paper

Effect of Engine Design/Control Parameters and Emission Control Systems on Specific Reactivity of S.I. Engine Exhaust Gases

In 1994, the California Air Resources Board implemented low-emission vehicle (LEV) standards with the aim of improving urban air quality. One feature of the LEV standards is the increasingly tighter regulation of non-methane organic gases (NMOG), taking into account ozone formation, in addition to the existing control of non-methane hydrocarbons (NMHC). Hydrocarbons and other organic gases emitted by S.I. engines have been identified as a cause of atmospheric ozone formation. Since the reactivity of each chemical species in exhaust emissions differs, the effect on ozone formation varies depending on the composition of the exhaust gas components. This study examined the effect of different engine types, fuel atomization conditions, turbulence and emission control systems on emission species and specific reactivity. This was done using gas chromatographs and a high-performance liquid chromatograph to analyze exhaust emission species that affect ozone formation.
Technical Paper

Practical Challenges on Yokohama Mobility “Project ZERO” - Towards next generation mobility for low-carbon future

Reduction of greenhouse gases or CO2 is the global issue for sustainability. City of Yokohama, where 3.7 million people live, established the Yokohama Climate Change Action Policy “CO-DO30”, aiming to cut down on greenhouse gas emissions by over 30% per person by 2025, and by over 60% by 2050. “CO-DO30” includes 7 areas of approaches, such as Living, Businesses, Buildings, Transportation, Energies, Urban and Green, and City Hall. To achieve this challenging target, practical and effective action on transportation area is definitely required, because it emits 20% of total greenhouse gas emission in the city. In 2008, City of Yokohama and Nissan jointly started YOKOHAMA Mobility “Project ZERO” (YMPZ), a 5-year project aimed at realizing “Eco-Model City, Yokohama”.
Technical Paper

A New Quasi-Dimensional Combustion Model Applicable to Direct Injection Gasoline Engine

Gasoline engines employ various mechanisms for improvement of fuel consumption and reduction of exhaust emissions to deal with environmental problems. Direct fuel injection is one such technology. This paper presents a new quasi-dimensional combustion model applicable to direct injection gasoline engine. The Model consists of author's original in-cylinder turbulence and mixture homogeneity sub model suitable for direct fuel injection conditions. Model validation results exhibit good agreement with experimental and 3D CFD data at steady state and transient operating conditions.
Journal Article

Improvement of Combustion Stability under Cold Ambient Condition by Mixture Control

For diesel engine, lower compression ratio has been demanded to improve fuel consumption, exhaust emission and maximum power recently. However, low compression ratio engine might have combustion instability issues under cold temperature condition, especially just after engine started. As a first step of this study, cold temperature combustion was investigated by in-cylinder pressure analysis and it found out that higher heat release around top dead center, which was mainly contributed by pilot injection, was the key factor to improve engine speed fluctuation. For further understanding of combustion in cold condition, particularly mixture formation near a glow plug, 3D CFD simulation was applied. Specifically for this purpose, TI (Time-scale Interaction) combustion model has been developed for simulating combustion phenomena. This model was based on a reasonable combustion mode, taking into account the characteristic time scale of chemical reactions and turbulence eddy break-up.
Technical Paper

Economical Matching of the Thermal Reactor to Small Engine-Low Emission Concept Vehicles

The Inter-Industry Emission Control (IIEC) Program included the thermal reactor as one of the effective ways of oxidizing HC and CO in the exhaust system. However, this was accompanied by very substantial fuel economy penalties, especially in the case of small engine-low emission concept vehicles. Starting with a new concept aimed at obtaining the HC/CO oxidizing trigger temperature in the thermal reactor by modifying engine settings, the authors arrived at an economical technique of matching the thermal reactor to the engine.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Technical Paper

Positioning System with Vision Sensor for Automatic Arc Welding

This report describes an arc-welding robot system with a vision sensor which Nissan Motor Co., Ltd. has introduced to automate the arc welding line for truck frames. Developed in-house, this system is now in operation on the arc welding line for Nissan Truck frames at Nissan's Kyushu plant. In developing the system, primary emphasis was placed on assuring practicality and high reliability. Included among the prominent features of the system is the capability to detect the welding line of thin panels with a high degree of accuracy and to calculate corrections when needed. To assure the high speed and reliability needed for the production line, the robot and sensor are separated, and the vision sensors are placed at fixed positions. Detection of the welding line and transmission of data to the robots to correct their positions are completed just prior to welding, so as to avoid the effects of noise and the arc flash during welding.
Technical Paper

Sources of Hydrocarbon Emissions from a Small Direct Injection Diesel Engine

The purpose of this paper is to clarify the mechanisms of unburnt hydrocarbon (HC) emissions from a small direct - injection (DI) diesel engine. HC emission levels of small DI diesel engines are considerably higher than those of corresponding indirect - injection (IDI) diesel engines, even when sacless injection nozzles that are effective in reducing HC emissions are installed on them. In this study, analytical engine tests were performed to evaluate the relative significance of various potential sources of HC emissions from a small DI diesel engine equipped with sacless type injectors.
Technical Paper

Technological Trends in Automotive Electronics

Although automotive electronics was initially applied as a substitute for mechanical parts, this technology has the potential to achieve effective combinations of mechanical functions. A case in point is the successful resolution of fuel consumption and exhaust emission problems by effectively integrating engine control and catalyst technologies. LSI technology has also been incorporated into automotive electronics and established as a fundamental engine control tool. Thanks to LSI technology, particularly the use of microprocessor techniques, conventional machine design problems have been transformed into logical design ones. In the next stage of application, automotive electronics is expected to provide further benefits including a more comfortable ride, an improved human-machine system interface, and an advanced communications system between vehicles and other telecommunications stations.
Technical Paper

Development of a New 5.6L Nissan V8 Gasoline Engine

This paper describes a new 5.6-liter DOHC V8 engine, VK56DE, which was developed for use on a new full-size sport utility vehicle and a full-size pickup truck. To meet the demands for acceleration performance when merging into freeway traffic, passing or re-acceleration performance from low speed in city driving and hill-climbing or passing performance when towing, the VK56DE engine produces high output power at top speed and also generates ample torque at low and middle engine speeds (90% of its maximum torque is available at speeds as low as 2500 rpm). Furthermore, this engine achieves top-level driving comfort in its class as a result of being derived from the VK45DE engine that was developed for use on a sporty luxury sedan. Development efforts were focused on how to balance the required performance with the need for quietness and smoothness.
Technical Paper

Soot Regeneration Model for SiC-DPF System Design

The Diesel Particulate Filter (DPF) system has been developed as one of key technologies to comply with tight diesel PM emission regulations. For the DPF control system, it is necessary to maintain temperature inside the DPF below the allowable service temperature, especially during soot regeneration to prevent catalyst deterioration and cracks. Therefore, the evaluation of soot regeneration is one of the key development items for the DPF system. On the other hand, regeneration evaluation requires a lot of time and cost since many different regeneration conditions should be investigated in order to simulate actual driving. The simulation tool to predict soot regeneration behavior is a powerful tool to accelerate the development of DPF design and safe regeneration control strategies. This paper describes the soot regeneration model applied to fuel additive and catalyzed types, and shows good correlation with measured data.
Technical Paper

A Study of Friction Characteristics of Continuously Variable Valve Event & Lift (VEL) System

A continuously variable valve event and lift (VEL) system, actuated by oscillating cams, can provide optimum lift and event angles matching the engine operating conditions, thereby improving fuel economy, exhaust emission performance and power output. The VEL system allows small lift and event angles even in the engine operating region where the required intake air volume is small and the influence of valvetrain friction is substantial, such as during idling. Therefore, the system can reduce friction to lower levels than conventional valvetrains, which works to improve fuel economy. On the other hand, a distinct feature of oscillating cams is that their sliding velocity is zero at the time of peak lift, which differs from the behavior of conventional rotating cams. For that reason, it is assumed that the friction and lubrication characteristics of oscillating cams may differ from those of conventional cams.
Technical Paper

Warm-Up Characteristics of Thin Wall Honeycomb Catalysts

HC emission standards will be tightened during the 1990's in the US. A key issue in reducing HC emission is improving the warm-up characteristics of catalysts during the cold start of engines. For this purpose, studies are under way on reduction of heat mass of ceramic substrates. Reduction of cell walls in substrates to thickness smaller than the current thickness of 12mil or 6mil has resulted in reduced heat mass, and also reduced flow restriction of substrates. The warm-up characteristics of low bulk density catalysts are better than those of high bulk density, i.e., the warm-up characteristics of thinner wall or lower cell density catalysts are better than those of thicker wall or higher cell density catalysts. A relationship between geometric surface area and warm-up characteristics is observed.
Technical Paper

Improvement of Lambda Control Based on an Exhaust Emission Simulation Model that Takes into Account Fuel Transportation in the Intake Manifold

This paper presents an improved exhaust emission simulation model that takes into account fuel transportation behavior in order to obtain more precise air-fuel ratio control, which is needed to meet stringent exhaust emission standards. This simulation model is based on experimental formulas for air and fuel behavior in the intake manifold, especially during transient engine operation. Fuel behavior, including the effect of wall flow on the air-fuel ratio, is obtained analytically. Predictions are then made of the exhaust emissions from a car operated under official driving schedules. The new simulation model is a useful tool in the design and development of fuel supply control systems. An outline of the new model is presented first along with a comparison of the calculated and experimental results. The air-fuel ratio control strategy derived with this model is then described.
Technical Paper

A Robotic Driver on Roller Dynamometer with Vehicle Performance Self Learning Algorithm

A robotic driver has been designed on the basis of an analysis of a human driver's action in following a given driving schedule. The self-learning algorithm enables the robot to learn the vehicle characteristics without human intervention. Based on learned relationships, the robotic driver can determine an appropriate accelerator position and execute other operations through sophisticated calculations using the future scheduled vehicle speed and vehicle characteristics data. Compensation is also provided to minimize vehicle speed error. The robotic driver can reproduce the same types of exhaust emission and fuel economy data obtained with human drivers with good repeatability. It doesn't require long preparation time. Thereby making it possible to reduce experimentation work in the vehicle development process while providing good accuracy and reliability.
Technical Paper

Development of High Strength Transmission Gears

High strength transmission gears have been developed for use in the final gear set of front-wheel-drive vehicles. The steel used as the gear material has a higher molybdenum content, allowing more austenite to be retained following carburizing than is possible with chromium steel. As a result, the steel can be subjected to higher intensity shot peening by using harder peening particles which are projected by an air-nozzle peening system. With this procedure, the fatigue strength of the gears can be increased 1.6 times over that of conventional gears.