Refine Your Search

Topic

Search Results

Journal Article

Analysis of Flight Test Results of the Optical Ice Detector

2015-06-15
2015-01-2106
Cloud phase discrimination, coupled with measurements of liquid water content (LWC) and ice water content (IWC) as well as the detection and discrimination of supercooled large droplets (SLD), are of primary importance in aviation safety due to several high-profile incidents over the past two decades. The UTC Aerospace Systems Optical Ice Detector (OID) is a prototype laser sensor intended to discriminate cloud phase, to quantify LWC and IWC, and to detect SLD and differentiate SLD conditions from those of Appendix C. Phase discrimination is achieved through depolarization scattering measurements of a circularly polarized laser beam transmitted into the cloud. Optical extinction measurements indicate the liquid and ice water contents, while the differential backscatter from two distinct probe laser wavelengths implies an effective droplet size. The OID is designed to be flush-mounted with the aircraft skin and to sample the air stream beyond the boundary layer of the aircraft.
Technical Paper

Power Density of Multi-Purpose Motor Controllers - Challenge Beyond Switches

2016-09-20
2016-01-2012
There are many identical large solid-state switching Multi-Purpose Motor Controllers on board of one of the More Electric Aircrafts (MEA). The controllers drive over twice as many different machines with wide torque and speed ranges. The common motor controllers are installed in a central location. The machines are located at diverse and distant positions. Power is delivered and routed from the controllers to machines via a large network comprising of unshielded feeders and multiplexing units. The controllers are required to produce sine wave voltage output to machines, and draw clean power from the source to meet Power Quality (PQ) and Electromagnetic Interference (EMI) requirements. There are significant aircraft level weight savings with that concept. However, designing such a clean motor controller was a major power density challenge beyond switches, accounting for high torque main propulsion engine start and high speed Cabin Air Compressors.
Technical Paper

Optimized Design Procedure for Active Power Converters in Aircraft Electrical Power Systems

2016-09-20
2016-01-1989
In modern aircraft power systems, active power converters are promising replacements for transformer rectifier units concerning efficiency and weight. To assess the benefits of active power converters, converter design and optimization should be carefully done under the operation requirements of aircraft applications: electromagnetic interference (EMI) standards, power quality standards, etc. Moreover, certain applications may have strict limits on other converter specifications: weight, size, converter loss, etc. This paper presents the methodology for performance optimization of different active power converters (active front-ends, isolated DC/DC converters and three-phase isolated converters) for aircraft applications. Key methods for power converter component (e.g. inductors, semiconductor devices, etc.) performance optimization and loss calculation are introduced along with the converter optimization procedure.
Technical Paper

A Lightweight Spatio-Temporally Partitioned Multicore Architecture for Concurrent Execution of Safety Critical Workloads

2016-09-20
2016-01-2067
Modern aircraft systems employ numerous processors to achieve system functionality. In particular, engine controls and power distribution subsystems rely heavily on software to provide safety-critical functionality, and are expected to move toward multicore architectures. The computing hardware-layer of avionic systems must be able to execute many concurrent workloads under tight deterministic execution guarantees to meet the safety standards. Single-chip multicores are attractive for safety-critical embedded systems due to their lightweight form factor. However, multicores aggressively share hardware resources, leading to interference that in turn creates non-deterministic execution for multiple concurrent workloads. We propose an approach to remove on-chip interference via a set of methods to spatio-temporally partition shared multicore resources.
Technical Paper

Method for Analytical Calculation of Harmonic Content of Auto-Transformer Rectifier Units

2016-09-20
2016-01-2059
Auto transformer rectifier units (ATRUs) are commonly used in aircraft applications such as electric actuation for harmonic mitigation due to their high reliability and relative low cost. However, those components and the magnetic filter components associated to it are the major contributors to the overall size and weight of the system. Optimization of the magnetic components is essential in order to minimize weight and size, which are major market drivers in aerospace industry today. This requires knowledge of the harmonic content of the current. This can be obtained by simulation, but the process is slow. In order to enable fast and efficient design space exploration of optimal solutions, an algebraic calculation process is proposed in this paper for multi-pulse ATRUs (e.g. 12-pulse and 18-pulse rectifiers), starting from existing solution proposed for 6 pulse rectifier in the literature.
Technical Paper

A Method of Reporting and Prioritizing Faults for Aircraft Downtime Reduction

2017-09-19
2017-01-2125
The exponential increase in the number of aircrafts and air travelers has triggered new innovations which aim to make airline services more reliable and consumer friendly. Quick and efficient maintenance actions with minimum downtime are the need of the hour. Areas that have a large potential for improvement in this regard are the real time use of diagnostic data, filtering/elimination of nuisance faults and machine learning capabilities with respect to maintenance actions. Although, numerous LRUs installed on the aircraft generate massive amounts of diagnostic data to detect any possible issue or LRU failure, it is seldom used in real time. The turnaround time for LRU maintenance can be greatly reduced if the results of the diagnostics conducted during LRU normal operation is relayed to ground stations in real-time. This enables the maintenance engineers to plan ahead and initiate maintenance actions well before the aircraft lands and becomes available for maintenance.
Technical Paper

Electromagnetic Compatibility and Interference - Design Methodology, Challenges and Guidelines for Avionics Product and Systems

2017-09-19
2017-01-2118
Avionics industry is moving towards more electric & lightweight aircrafts. Electromagnetic effects becomes significantly challenging as materials starts moving towards composite type. Traditional methods for controlling EMC will not be sufficient. This shift increases the complexity of in-flight hardware elements for EMI/EMC control. This paper discusses the need for EMI/EMC Control and brings out the analysis & applicability of various EMI/EMC standards in aerospace, commercial and industrial electronic products, provides comparative study with respect to levels. The study include various sections of DO-160 and applicable guidelines for controlling EMI/EMC with respect to LRU (Line Replaceable Unit) & wire/cable harnesses. Also presents guidelines with respect to shielding of components, selection of components, grounding schemes, filter topologies and layout considerations.
Technical Paper

Adopting Model-Based Software Design and Verification for Aerospace Systems

2017-09-19
2017-01-2110
The complexity of software development is increasing unprecedentedly with every next generation of aircraft systems. This requires to adopt new techniques of software design and verification that could optimize the time and cost of software development. At the same time these techniques need to ensure high quality of software design and safety compliance to regulatory guidelines like DO-178C [1] and its supplements DO-330[2] and DO-331[3]. To arrive at new technologies one has to evaluate the alternate methods available for software design by developing models, integration of models, auto-code generation, auto test generation and also the performance parameters like time, effort, reuse and presentation needs to be evaluated. We have made an attempt to present summary of alternate design concept study, and edge of MBD over other design techniques.
Technical Paper

Framework and Platform for Next Generation Aircraft Health Management System

2017-09-19
2017-01-2126
In aerospace industry, the concept of Integrated Vehicle Health Management (IVHM) has gained momentum and is becoming need of the hour for entire value chain in the industry. The expected benefits of lesser time for maintenance reduced operating cost and ever busy airports are motivating aircraft manufacturers to come up with tools, techniques and technologies to enable advanced diagnostic and prognostic systems in aircrafts. At present, various groups are working on different systems and platforms for health monitoring of an aircraft e.g. SHM (Structural Health Monitoring), PHM (Prognostics Health Monitoring), AHM (Aircraft Health Monitoring), and EHM (Engine Health Monitoring) and so on. However, these approaches are mostly restricted to federated architecture where faults and failures for standalone line replaceable units (LRUs) are logged inside the unit in fault storage area and are retrieved explicitly using maintenance based applications for fault and failure diagnostics.
Technical Paper

Data Fusion Techniques for Object Identification in Airport Environment

2017-09-19
2017-01-2109
Airport environments consist of several moving objects both in the air and on the ground. In air moving objects include aircraft, UAVs and birds etc. On ground moving objects include aircraft, ground vehicles and ground personnel etc. Detecting, classifying, identifying and tracking these objects are necessary for avoiding collisions in all environmental situations. Multiple sensors need to be employed for capturing the object shape and position from multiple directions. Data from these sensors are combined and processed for object identification. In current scenario, there is no comprehensive traffic monitoring system that uses multisensor data for monitoring in all the airport areas. In this paper, for explanation purposes, a hypothetical airport traffic monitoring system is presumed that uses multiple sensors for avoiding collisions.
Technical Paper

Power Dissipation Optimization for Solid State Power Control Modules in the Aircraft Secondary Power Distribution System

2018-10-30
2018-01-1930
In the last two decades, an aerospace industry trend in the secondary power distribution concept has been dominated by power electronics technology which includes power converters and Power Control Modules based on Solid State Power Control (SSPC) switching elements. These Power Control Modules, grouped around microprocessor based controllers and combined in a single electronic chassis, have become a backbone of electrical power distribution systems on all major commercial and military transport aircraft. Due to the resistive properties of the semiconductor-based SSPC devices, whose behaviors can be described as nonlinear functions of ambient operating temperature, power distribution system integration with SSPCs is challenged and heavily affected by operating temperatures and power dissipation limits. Although aircraft compartments where Power Control Modules are located are considered temperature and pressure controlled, high ambient operating temperatures are possible and expected.
Technical Paper

A Methodology for Formal Requirements Validation and Automatic Test Generation and Application to Aerospace Systems

2018-10-30
2018-01-1948
Automation on Validation and Verification (V&V) leveraging Formal Methods, and in particular Model Checking, is seeing an increasing use in the Aerospace domain. In recent years, Formal Methods have been used to verify systems and software and its correctness as a way to augment traditional methods relying on simulation and testing. Recent updates to the relevant Aerospace regulations (e.g. DO178C, DO331 and DO333) now have explicit provisions for utilization of models and formal methods. In a previous paper a compositional methodology for the verification of Aerospace Systems has been described with application to Electrical Power Generation and Distribution Systems. In this paper we present an expansion of the previous work in two directions. First, we describe the application of the methodology to the validation of Proximity Sensing Systems (PSS) requirements showing the effectiveness of the method to a new aerospace domain.
Technical Paper

Embedded COTS - A Gateway for New Processors/High Performing Machines to Digital Avionics System Industry

2014-09-16
2014-01-2206
Today's digital avionics systems leverage the use of the Embedded COTS (Commercial Off The Shelf) hardware to fit the need of small form factor, low power, reduced time to market and reduced development time with efficient use of DO-254 for compliance of product. COTS modules are entering in digital avionics systems such as COM (Computer On Module)/SOM (System On Module)/SIP (System In Package) with huge advancement in semiconductor and packaging industry. In today's scenario COTS are very useful for DAL (Development Assurance Level) C and below as the efforts on compliance for DAL A and B are huge. This paper proposes to use these for DAL A and B as well, where one can get enormous benefit on efforts of compliance and time to market. This paper makes an attempt to explain the current scenario of the Embedded COTS usage in Avionics Systems.
Technical Paper

Wireless Sensing - Future's Password to Digital Avionics System

2014-09-16
2014-01-2132
Performance of Avionics systems is dictated by the timely availability and usage of critical health parameters. Various sensors are extensively used to acquire and communicate the desired parameters. In today's scenario, sensors are hardwired. The number of sensors is growing due to automation which increases the accuracy of intended Aircraft functions. Sensors are distributed all over the Aircraft and they are connected through wired network for signal processing and communication. LRUs (Line Replaceable Unit) which are integrating various sensors also use a wired approach for communication. The use of a wired network approach poses challenges in terms of cable routing, stray capacitances, noise, mechanical structure and added weight to the structure. The weight of cables contributes significantly to the overall weight of the aircraft. As the weight of Aircraft increases, the required fuel quantity also increases. The Key driver for Airline operational cost is fuel.
Technical Paper

Wavelet-based Fouling Diagnosis of the Heat Exchanger in the Aircraft Environmental Control System

2015-09-15
2015-01-2582
The Environmental Control System (ECS) of an aircraft provides thermal and pressure control of the engine bleed air for comfort of the crew members and passengers onboard. For safe and reliable operation of the ECS under complex operating environments, it is critical to detect and diagnose performance degradations in the system during early phases of fault evolution. One of the critical components of the ECS is the heat exchanger, which ensures proper cooling of the engine bleed air. This paper presents a wavelet-based fouling diagnosis approach for the heat exchanger.
Technical Paper

System-Level Fault Diagnosis with Application to the Environmental Control System of an Aircraft

2015-09-15
2015-01-2583
This paper addresses the issues of Fault Detection and Isolation (FDI) in complex networked systems such as the Environmental Control System (ECS) of an aircraft. The ECS controls and supplies pressurized air to the aircraft and consists of multiple subsystems that in turn consist of interconnected components, heterogeneous sensing devices, and feedback controllers. These complex interconnections and feedback control loops make fault detection and isolation a very challenging task in the ECS. For example, a faulty component yields off-nominal outputs which are inputs to the other coupled components. This coupling leads to off-nominal outputs from otherwise healthy components, thus causing unwanted false-alarms. Secondly, due to off-nominal inputs, the healthy components are driven beyond their normal operating conditions, leading to cascading failures.
Technical Paper

Design and Implementation of Aircraft System Health Management (ASHM) Utilizing Existing Data Feeds

2015-09-15
2015-01-2587
The Aircraft System Health Management (ASHM) tool is a UTC developed web application that provides access to Aircraft Condition Monitoring Function (ACMF) reports and Flight Deck Effects (FDE) records for Boeing 787®, A320®, and A380® aircraft. The tool was built with a flexible architecture to field a range of off-board diagnostics and prognostics modules designed to transform an abundance of data into actionable and timely knowledge about fleet health. This paper describes the system architecture and implementation with a focus on “lessons learned” in applying diagnostic and prognostics algorithms to available fleet data. Key topics include ensuring analytic robustness, design for cross-enterprise collaboration and defining a workable approach to testing, validating and deploying prognostics and diagnostics models with various degrees of complexity. A case study is provided related to fluid leak detection within an environmental control subsystem.
Technical Paper

Augmented Head Mount Virtual Assist for Pilot

2015-09-15
2015-01-2536
Recent years have seen a rise in the number of air crashes and on board fatalities. Statistics reveal that human error constitutes upto 56% of these incidents. This can be attributed to the ever growing air traffic and technological advancements in the field of aviation, leading to an increase in the electronic and mechanical controls in the cockpit. Accidents occur when pilots misinterpret gauges, weather conditions, fail to spot mechanical faults or carry out inappropriate actions. Currently, pilots rely on flight manuals (hard copies or an electronic tablet) to respond to an emergency. This is prone to human error or misinterpretation. Also, a considerable amount of time is spent in seeking, reading, interpreting and implementing the corrective action. The proposed augmented head mount virtual assist for the pilot eliminates flight manuals, by virtually guiding the pilot in responding to in-flight necessities.
Technical Paper

Evaluation of Key Certification Aspects of Multi Core Platforms for Safety Critical Applications in Avionics Industry

2015-09-15
2015-01-2524
Multi core platforms offer high performance at low power and have been deemed as future of size, weight and power constrained applications like avionics safety critical applications. Multi core platforms are widely used in non-real time systems where the average case performance is desired like in consumer electronics, telecom domains. Despite these advantages, multi core platforms (hardware and software) pose significant certification challenges for safety critical applications and hence there has been limited usage in avionics and other safety critical applications. Many multicore platform solutions which can be certified to DO-254 & DO 178B Level A are commercially available. There is a need to evaluate these platforms w.r.t certification requirements before deploying them in the safety critical systems thereby reducing the program risks. This paper discusses the advantages of multi core platforms in terms of performance, power consumption and weight/size.
Journal Article

A Methodology for Increasing the Efficiency and Coverage of Model Checking and its Application to Aerospace Systems

2016-09-20
2016-01-2053
Formal Methods, and in particular Model Checking, are seeing an increasing use in the Aerospace domain. In recent years, Formal Methods are now commonly used to verify systems and software and its correctness as a way to augment traditional methods relying on simulation and testing. Recent updates to the relevant Aerospace regulations (e.g. DO178C, DO331 and DO333) now have explicit provisions for utilization of models and formal methods. At the system level, Model Checking has seen more limited uses due to the complexity and abstractions needed. In this paper we propose several methods to increase the capability of applying Model Checking to complex Aerospace Systems. An aircraft electrical power system is used to highlight the methodology. Automated model-based methods such as Cone of Influence and Timer Abstractions are described. Results of those simplifications, in combination with traditional Assume-Guarantee approaches will be shown for the Electric Power System application.
X