Refine Your Search

Search Results

Viewing 1 to 18 of 18
Technical Paper

Numerical Investigation on GDI Spray under High Injection Pressure up to 100 MPa

2020-09-15
2020-01-2108
In recent years, the increase of gasoline fuel injection pressure is a way to improve thermal efficiency and lower engine-out emissions in GDI homogenous combustion concept. The challenge of controlling particulate formation as well in mass and number concentrations imposed by emissions regulations can be pursued improving the mixture preparation process and avoiding mixture inhomogeneity with ultra-high injection pressure values up to 100 MPa. The increase of the fuel injection pressure in GDI homogeneous systems meets the demand for increased injector static flow, while simultaneously improves the spray atomization and mixing characteristics with consequent better combustion performance. Few studies quantify the effects of high injection pressure on transient gasoline spray evolution. The aim of this work was to simulate with OpenFOAM the spray morphology of a commercial gasoline injected in a constant volume vessel by a prototypal GDI injector.
Journal Article

Experimental Evaluation of Compression Ratio Influence on the Performance of a Dual-Fuel Methane-Diesel Light-Duty Engine

2015-09-06
2015-24-2460
The paper reports an experimental study on the effect of compression ratio variation on the performance and pollutant emissions of a single-cylinder light-duty research diesel engine operating in DF mode. The architecture of the combustion system as well as the injection system represents the state-of-the-art of the automotive diesel technology. Two pistons with different bowl volume were selected for the experimental campaign, corresponding to two CR values: 16.5 and 14.5. The designs of the piston bowls were carefully performed with the 3D simulation in order to maintain the same air flow structure at the piston top dead center, thus keeping the same in-cylinder flow characteristics versus CR. The engine tests choice was performed to be representative of actual working conditions of an automotive light-duty diesel engine.
Journal Article

Functional Requirements to Exceed the 100 kW/l Milestone for High Power Density Automotive Diesel Engines

2017-09-04
2017-24-0072
The paper describes the challenges and results achieved in developing a new high-speed Diesel combustion system capable of exceeding the imaginative threshold of 100 kW/l. High-performance, state-of-art prototype components from automotive diesel technology were provided in order to set-up a single-cylinder research engine demonstrator. Key design parameters were identified in terms boost, engine speed, fuel injection pressure and injector nozzle flow rates. In this regard, an advanced piezo injection system capable of 3000 bar of maximum injection pressure was selected, coupled to a robust base engine featuring ω-shaped combustion bowl and low swirl intake ports. The matching among the above-described elements has been thoroughly examined and experimentally parameterized.
Technical Paper

Multidimensional Simulations of Combustion in Methane-Diesel Dual-Fuel Light-Duty Engines

2017-03-28
2017-01-0568
The adoption of gaseous fuels for Light Duty (LD) engines is considered a promising solution to efficiently reduce greenhouse gases emissions and diversify fuels supplies, while keeping pollutants production within the limits. In this respect, the Dual Fuel (DF) concept has already proven to be, generally speaking, a viable solution, industrially implemented for several applications in the Heavy-Duty (HD) engines category. Despite this, some issues still require a technological solution, preventing the commercialization of DF engines in wider automotive fields, including the release of high amounts of unburned species, possibility of engine knock, chance of thermal efficiency reduction. In this framework, numerical simulation can be a useful tool, not only to better understand specific characteristics of DF combustion, but also to explore specific geometrical modifications and engine calibrations capable to adapt current LD architectures to this concept.
Technical Paper

Outward-Opening Hollow-Cone Spray Characterization by Experimental and Numerical Approach in Evaporative and Non-Evaporative Conditions

2017-09-04
2017-24-0108
In the present paper, a new concept of open nozzle spray was investigated as possible application for compression ignition engines. The study concerns an experimental and numerical characterization of a spray generated through a prototype high-pressure hollow-cone nozzle (HCN). The experimental description of the injection process was carried out under evaporative and non-evaporative conditions injecting the fuel in a constant-volume combustion vessel controlled in pressure and temperature in order to measure the spatial and temporal fuel pattern at engine-like gas densities. OpenFOAM libraries in the lib-ICE version of the numerical code were employed for simulating the spray dynamics after a first validation phase based on the experimental data. Results show a typical spray structure of the outward-opening nozzle with the overall fluid-dynamic arrangement having a good fuel distribution along the hollow-cone geometry but showing a reduced spatial penetration.
Technical Paper

Analysis of a Prototype High-Pressure “Hollow Cone Spray” Diesel Injector Performance in Optical and Metal Research Engines

2017-09-04
2017-24-0073
Technologies for direct injection of fuel in compression ignition engines are in continuous development. One of the most investigated components of this system is the injector; in particular, main attention is given to the nozzle characteristics as hole diameter, number, internal shape, and opening angle. The reduction of nozzle hole diameter seems the simplest way to increase the average fuel velocity and to promote the atomization process. On the other hand, the number of holes must increase to keep the desired mass flow rate. On this basis, a new logic has been applied for the development of the next generation of injectors. The tendency to increase the nozzle number and to reduce the diameter has led to the replacement of the nozzle with a circular plate that moves vertically. The plate motion allows to obtain an annulus area for the delivery of the fuel on 360 degrees; while the plate lift permits to vary the atomization level of the spray.
Technical Paper

Parametric Analysis of the Effect of Pilot Quantity, Combustion Phasing and EGR on Efficiencies of a Gasoline PPC Light-Duty Engine

2017-09-04
2017-24-0084
In this paper, a parametric analysis on the main engine calibration parameters applied on gasoline Partially Premixed Combustion (PPC) is performed. Theoretically, the PPC concept permits to improve both the engine efficiencies and the NOx-soot trade-off simultaneously compared to the conventional diesel combustion. This work is based on the design of experiments (DoE), statistical approach, and investigates on the engine calibration parameters that might affect the efficiencies and the emissions of a gasoline PPC. The full factorial DoE analysis based on three levels and three factors (33 factorial design) is performed at three engine operating conditions of the Worldwide harmonized Light vehicles Test Cycles (WLTC). The pilot quantity (Qpil), the crank angle position when 50% of the total heat is released (CA50), and the exhaust gas recirculation (EGR) factors are considered. The goal is to identify an engine calibration with high efficiency and low emissions.
Technical Paper

Multi-Dimensional Modeling of Combustion in Compression Ignition Engines Operating with Variable Charge Premixing Levels

2011-09-11
2011-24-0027
Premixed combustion modes in compression ignition engines are studied as a promising solution to meet fuel economy and increasingly stringent emissions regulations. Nevertheless, PCCI combustion systems are not yet consolidated enough for practical applications. The high complexity of such combustion systems in terms of both air-fuel charge preparation and combustion process control requires the employment of robust and reliable numerical tools to provide adequate comprehension of the phenomena. Object of this work is the development and validation of suitable models to evaluate the effects of charge premixing levels in diesel combustion. This activity was performed using the Lib-ICE code, which is a set of applications and libraries for IC engine simulations developed using the OpenFOAM® technology.
Technical Paper

Experimental and Numerical Analysis of a High-Pressure Outwardly Opening Hollow Cone Spray Injector for Automotive Engines

2017-03-28
2017-01-0840
In the aim of reducing CO2 emissions and fuel consumption, the improvement of the diesel engine performance is based on the optimization of the whole combustion system efficiency. The focus of new technological solutions is devoted to the optimization of thermodynamic efficiency especially in terms of reduction of losses of heat exchange. In this context, it is required a continuous development of the engine combustion system, first of all the injection system and in particular the nozzle design. To this reason in the present paper a new concept of an open nozzle spray was investigated as a possible solution for application on diesel engines. The study concerns some experimental and numerical activities on a prototype of an open nozzle. An external supplier provided the prototypal version of the injector, with a dedicated piezoelectric actuation system, and with an appropriate choice of geometrical design parameters.
Technical Paper

Parametric Analysis of Compression Ratio Variation Effects on Thermodynamic, Gaseous Pollutant and Particle Emissions of a Dual-Fuel CH4-Diesel Light Duty Engine

2017-03-28
2017-01-0764
The paper reports the results of an experimental campaign aimed to assess the impact of the compression ratio (CR) variation on the performance and pollutant emissions, including the particle size spectrum, of a single cylinder research engine (SCE), representatives of the engine architectures for automotive application, operated in dual-fuel methane-diesel mode. Three pistons with different bowl volumes corresponding to CR values of 16.5, 15.5 and 14.5 were adopted for the whole test campaign. The injection strategy was based on two injection pulses per cycle, as conventionally employed for diesel engines. The test methodology per each CR included the optimization of both 1st injection pulse quantity and intake air mass flow rate in order to lower as much as possible the unburned methane emissions (MHC).
Technical Paper

Experimental and Numerical Analysis of Nozzle Flow Number Impact on Full Load Performance of an Euro5 Automotive Diesel Engine

2012-04-16
2012-01-0679
The present paper describes an experimental and numerical study on the effect of the nozzle flow number (FN) on the full load performance of a modern Euro5 diesel automotive engine, in terms of torque, efficiency and exhaust emissions. The improvement of the diesel engine performance requires a continuous development of the engine components, first of all the injection system and in particular the nozzle design. One of the most crucial factors affecting performance and emissions is the nozzle flow number and its influence becomes more and more important as high performance and low emissions are continuous requirements. Indeed, reducing the nozzle flow number, due to an increase of spray-air mixing, an improvement in PM-NOx trade-off is generally expectable. On the other hand, at full load, where peak firing pressure and exhaust valve temperature become the limiting factors, critical operating conditions can be easily reached reducing the nozzle hole diameter.
Technical Paper

Assessment of the New Features of a Prototype High-Pressure “Hollow Cone Spray” Diesel Injector by Means of Engine Performance Characterization and Spray Visualization

2018-09-10
2018-01-1697
The application of more efficient compression ignition combustion concepts requires advancement in terms of fuel injection technologies. The injector nozzle is the most critical component of the whole injection system for its impact on the combustion process. It is characterized by the number of holes, diameter, internal shape, and opening angle. The reduction of the nozzle hole diameter seems the simplest way to promote the atomization process but the number of holes must be increased to keep constant the injected fuel mass. This logic has been applied to the development of a new generation of injectors. First, the tendency to increase the nozzle number and to reduce the diameter has led to the replacement of the nozzle with a circular plate. The vertical movement of the needle generates an annulus area for the fuel delivery on 360 degrees, so controlling the atomization as a function of the vertical plate position.
Technical Paper

The Key Role of Advanced, Flexible Fuel Injection Systems to Match the Future CO2 Targets in an Ultra-Light Mid-Size Diesel Engine

2018-05-30
2018-37-0005
The paper describes the results achieved in developing a new diesel combustion system for passenger car application that, while capable of high power density, delivers excellent fuel economy through a combination of mechanical and thermodynamic efficiencies improvement. The project stemmed from the idea that, by leveraging the high fuel injection pressure of last generation common rail systems, it is possible to reduce the engine peak firing pressure (pfp) with great benefits on reciprocating and rotating components light-weighting and friction for high-speed light-duty engines, while keeping the power density at competitive levels. To this aim, an advanced injection system concept capable of injection pressure greater than 2500 bar was coupled to a prototype engine featuring newly developed combustion system. Then, the matching among these features have been thoroughly experimentally examined.
Technical Paper

Estimation of TTW and WTW Factors for a Light Duty Dual Fuel NG-Diesel EU5 Passenger Car

2014-04-01
2014-01-1621
An increasing interest in the use of natural gas in CI engines is currently taking place, due to several reasons: it is cheaper than conventional Diesel fuel, permits a significant reduction in the amount of emitted carbon dioxide and is intrinsically cleaner, being much less prone to soot formation. In this respect, the Dual Fuel (DF) concept has already proven to be a viable solution, industrially implemented for several applications in the high duty engines category. Despite this, some issues still require a technological solution, preventing the commercialization of DF engines in wider automotive fields: the release of high amounts of unburned fuel, the risk of engine knock, the possible thermal efficiency reduction are some factors regarding the fuel combustion aspect. DF configuration examined in the present paper corresponds to Port Fuel Injection of natural gas and direct injection of the Diesel Fuel.
Technical Paper

Schlieren and Mie Scattering Visualization for Single-Hole Diesel Injector under Vaporizing Conditions with Numerical Validation

2014-04-01
2014-01-1406
This paper reports an experimental and numerical investigation on the spatial and temporal liquid- and vapor-phase distributions of diesel fuel spray under engine-like conditions. The high pressure diesel spray was investigated in an optically-accessible constant volume combustion vessel for studying the influence of the k-factor (0 and 1.5) of a single-hole axial-disposed injector (0.100 mm diameter and 10 L/d ratio). Measurements were carried out by a high-speed imaging system capable of acquiring Mie-scattering and schlieren in a nearly simultaneous fashion mode using a high-speed camera and a pulsed-wave LED system. The time resolved pair of schlieren and Mie-scattering images identifies the instantaneous position of both the vapor and liquid phases of the fuel spray, respectively. The studies were performed at three injection pressures (70, 120, and 180 MPa), 23.9 kg/m3 ambient gas density, and 900 K gas temperature in the vessel.
Technical Paper

CFD Modeling and Validation of the ECN Spray G Experiment under a Wide Range of Operating Conditions

2019-09-09
2019-24-0130
The increasing diffusion of gasoline direct injection (GDI) engines requires a more detailed and reliable description of the phenomena occurring during the fuel injection process. As well known the thermal and fluid-dynamic conditions present in the combustion chamber greatly influence the air-fuel mixture process deriving from GDI injectors. GDI fuel sprays typically evolve in wide range of ambient pressure and temperatures depending on the engine load. In some particular injection conditions, when in-cylinder pressure is relatively low, flash evaporation might occur significantly affecting the fuel-air mixing process. In some other particular injection conditions spray impingement on the piston wall might occur, causing high unburned hydrocarbons and soot emissions, so currently representing one of the main drawbacks of GDI engines.
Journal Article

Experimental Study of Additive-Manufacturing-Enabled Innovative Diesel Combustion Bowl Features for Achieving Ultra-Low Emissions and High Efficiency

2020-06-30
2020-37-0003
In recent years the research on Diesel engines has been increasingly shifting from performance and refinement to ultra-low emissions and efficiency. In fact, the last two attributes are key for the powertrain competitiveness in the propulsion electrified future, especially in the European market where 95gCO2/km fleet average and Euro6D RDE Step2 are phasing in at the same time. The present paper describes some of the most innovative research that GM and Istituto Motori Napoli are performing in the field, exploring how the steel-based additive manufacturing can be used to create innovative combustion bowl features that optimize the combustion process to a level that was not compatible with standard manufacturing technologies.
Journal Article

Balancing Hydraulic Flow and Fuel Injection Parameters for Low-Emission and High-Efficiency Automotive Diesel Engines

2019-09-09
2019-24-0111
The introduction of new light-duty vehicle emission limits to comply under real driving conditions (RDE) is pushing the diesel engine manufacturers to identify and improve the technologies and strategies for further emission reduction. The latest technology advancements on the after-treatment systems have permitted to achieve very low emission conformity factors over the RDE, and therefore, the biggest challenge of the diesel engine development is maintaining its competitiveness in the trade-off “CO2-system cost” in comparison to other propulsion systems. In this regard, diesel engines can continue to play an important role, in the short-medium term, to enable cost-effective compliance of CO2-fleet emission targets, either in conventional or hybrid propulsion systems configuration. This is especially true for large-size cars, SUVs and light commercial vehicles.
X