Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Enabling New Optical Fiber Applications in Avionics Networks

2012-03-21
Optical fiber has begun replacing copper in avionic networks. So far, however, it has been mainly restricted to non-critical applications (video transmission to the flight deck, IFE?). In order to take advantage of the high-bandwidth, low weight, no EMI properties of optical fibers in all data transmission networks, it will be necessary to improve the testing. One part of the puzzle, which is still missing, is the self-test button: the possibility to check the network and detect potential failures before they occur. The typical testing tool of a technician involved in optical fiber cables is the ?light source ? optical power meter? pair. With this tool, one can measure the insertion loss of the fiber link. A second important parameter, the return loss at each optical connector, is not analysed. In addition, this is only a global measurement, which does not allow the detection of possible weak points.
Video

Review of Updated Aerospace Recommended Practices ARP5061A, "Guidelines for Testing and Support of Aerospace, Fiber Optic, Inter-Connect Systems"

2012-03-12
In this presentation we will present a COTS solution for an ARINC 653 IMA based system. It will cover IMA concepts from an OS point of view and show how a platform can be built for application development. It will also cover DO-297, and how that can isolate applications for certification and test purposes and allow for easy configuration of multiple applications between different development teams. Presenter Alex Wilson, Wind River
Video

Corning Specialty Optical Fibers for Elevated Temperature Applications

2012-03-13
Corning Specialty Fiber Group developed new optical fibers with acrylate type coating materials for elevated temperature applications (up to +200C). Available single or dual coat designs, hermetic carbon coating, bend insensitive single-mode and multimode fiber glass designs expand application areas for fiber optics. Presenter Valery Kozlov
Video

Study of Materials and Coatings Used for Drilling Carbon Fiber Re-inforced Plastics

2012-03-14
With the increased usage of Carbon Fiber Reinforced Plastics (CFRP) in the aircraft industry, there has been increased pressure to improve cutting tool life. Tungsten carbide tools were the first to be applied to CFRP materials. Poly Crystalline Diamond (PCD) tools also became an acceptable material to be used as a cutting tool material. In recent years, Chemical Vapor Deposition (CVD) diamond tools have become more popular as a cutting tool material for CFRP. This study compares these possible cutting tool materials in the drilling of CFRP. Wear is measured as well as hole quality. Life is determined by common industry standards with regard to fiber break out in a common CFRP material. An economic analysis is conducted in order to determine cost per hole. Presenter Christophe Petit
Video

Detecting Damage and Damage Location on Large Composite Parts using RFID Technology

2012-03-16
Probabilistic methods are used in calculating composite part design factors for, and are intended to conservatively compensate for worst case impact to composite parts used on space and aerospace vehicles. The current method to investigate impact damage of composite parts is visual based upon observation of an indentation. A more reliable and accurate determinant of impact damage is to measure impact energy. RF impact sensors can be used to gather data to establish an impact damage benchmark for deterministic design criteria that will reduce material applied to composite parts to compensate for uncertainties resulting from observed impact damage. Once the benchmark has been established, RF impact sensors will be applied to composite parts throughout their life-cycle to alert and identify the location of impact damage that exceeds the maximum established benchmark for impact.
Video

Composite Predictive Engineering Studies - American Chemistry Council Plastics Division

2012-05-29
Since 2006 Oak Ridge National Labs (ORNL) and the Pacific Northwest National Labs (PNNL) have conducted research of injection molded long glass fiber thermoplastic parts funded by U.S. DOE. At DOE's request, ACC's Plastics Division Automotive Team and USCAR formed a steering committee for the National Labs, whose purpose was to provide industry perspective, parts materials and guidance in processing. This ACC affiliation enabled the plastics industry to identify additional key research requirements necessary to the success of long glass fiber injection molded materials and their use in the real world. Through further cooperative agreements with Autodesk Moldflow and University of Illinois, a new process model to predict both fiber orientation distribution and fiber length distribution is now available. Mechanical property predictive tools were developed and Moldflow is integrating these models into their software.
Video

5000 Hours Aging of THERBAN® (HNBR) Elastomers in an Aggressive Biodiesel Blend

2012-05-23
The need for light-weighting of automotive structures has spurred on a tremendous amount of interest in and development of low cost carbon fiber composite materials and manufacturing. This presentation provides a description of the commercial carbon fiber concept compared to traditional aerospace and specialty carbon fiber products. A specific update is presented on the development and commercialization of new low cost carbon fiber based on lignin / PAN precursor technology. The second focus of the presentation is on carbon fiber composite manufacturing processes, including carbon SMC, RTM, prepregs, and thermoplastic processes. Advantages and disadvantages of these processes are discussed, especially related to low cost manufacturing. Presenter George Husman, Zoltek Companies Inc.
Video

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-06-18
The development of PM and NOx reduction system with the combination of DOC included DPF and SCR catalyst in addition to the AOC sub-assembly for NH3 slip protection is described. DPF regeneration strategy and manual regeneration functionality are introduced with using ITH, HCI device on the EUI based EGR, VGT 12.3L diesel engine at the CVS full dilution tunnel test bench. With this system, PM and NOx emission regulation for JPNL was satisfied and DPF regeneration process under steady state condition and transient condition (JE05 mode) were successfully fulfilled. Manual regeneration process was also confirmed and HCI control strategy was validated against the heat loss during transient regeneration mode. Presenter Seung-il Moon
Standard

In-line, Elbow, and Tee Flanged Connectors for use with SAE J518-1/ISO6162-1 Components

2015-02-03
WIP
J518/4
This document standardizes the design of connector blocks used for joining SAE J518-1/ISO 6162-1 (Code 61) flange heads with other SAE J518-1/ISO 6162-1 (Code 61) flange heads with straight, elbow, and tee geometries. The blocks specified in this document are designed to provide for very compact installations. As a result, the tap depths specified in this document do not conform to those specified in SAE J518-1/ISO 6162-1 to allow for a minimal bend radius in the elbow and tee configurations. This document specifies both inch and metric configurations
Standard

Plastic Hose Fittings

2022-02-03
WIP
J3275
Standardize plastic fitting hose terminations and drop distances for SAE J2044 fittings
Standard

Committee Charter

2014-04-09
WIP
MTL-14-AA
SAE Metallic Materials Testing Laboratories, is a technical Subcommittee in SAE’s Aerospace Materials Systems Group with the responsibility to develop and maintain material specifications and other SAE technical reports for Aerospace Metallic Materials Testing Requirements. The Subcommittee works in conjunction with related bodies such as the Performance Review Institute (PRI), and regulatory authorities such as FAA and EASA. The objectives of MTL are to: • Develop Aerospace Specifications (AS) for the control of materials testing specific to aerospace applications. • Provide a forum for the exchange of technical information related to aerospace materials testing. • Further the adaptation of industry sponsored material specifications through coordination with PRI and associated organizations. • Establish a system to ensure aerospace specifications are controlled.
X