Refine Your Search

Topic

Author

Search Results

Journal Article

1-D Simulation Study of Divided Exhaust Period for a Highly Downsized Turbocharged SI Engine - Scavenge Valve Optimization

2014-04-01
2014-01-1656
Fuel efficiency and torque performance are two major challenges for highly downsized turbocharged engines. However, the inherent characteristics of the turbocharged SI engine such as negative PMEP, knock sensitivity and poor transient performance significantly limit its maximum potential. Conventional ways of improving the problems above normally concentrate solely on the engine side or turbocharger side leaving the exhaust manifold in between ignored. This paper investigates this neglected area by highlighting a novel means of gas exchange process. Divided Exhaust Period (DEP) is an alternative way of accomplishing the gas exchange process in turbocharged engines. The DEP concept engine features two exhaust valves but with separated function. The blow-down valve acts like a traditional turbocharged exhaust valve to evacuate the first portion of the exhaust gas to the turbine.
Journal Article

Ultra Boost for Economy: Extending the Limits of Extreme Engine Downsizing

2014-04-01
2014-01-1185
The paper discusses the concept, design and final results from the ‘Ultra Boost for Economy’ collaborative project, which was part-funded by the Technology Strategy Board, the UK's innovation agency. The project comprised industry- and academia-wide expertise to demonstrate that it is possible to reduce engine capacity by 60% and still achieve the torque curve of a modern, large-capacity naturally-aspirated engine, while encompassing the attributes necessary to employ such a concept in premium vehicles. In addition to achieving the torque curve of the Jaguar Land Rover naturally-aspirated 5.0 litre V8 engine (which included generating 25 bar BMEP at 1000 rpm), the main project target was to show that such a downsized engine could, in itself, provide a major proportion of a route towards a 35% reduction in vehicle tailpipe CO2 on the New European Drive Cycle, together with some vehicle-based modifications and the assumption of stop-start technology being used instead of hybridization.
Journal Article

Observations on the Measurement and Performance Impact of Catalyzed vs. Non Catalyzed EGR on a Heavily Downsized DISI Engine

2014-04-01
2014-01-1196
Increasingly stringent regulations and rising fuel costs require that automotive manufacturers reduce their fleet CO2 emissions. Gasoline engine downsizing is one such technology at the forefront of improvements in fuel economy. As engine downsizing becomes more aggressive, normal engine operating points are moving into higher load regions, typically requiring over-fuelling to maintain exhaust gas temperatures within component protection limits and retarded ignition timings in order to mitigate knock and pre-ignition events. These two mechanisms are counterproductive, since the retarded ignition timing delays combustion, in turn raising exhaust gas temperature. A key process being used to inhibit the occurrence of these knock and pre-ignition phenomena is cooled exhaust gas recirculation (EGR). Cooled EGR lowers temperatures during the combustion process, reducing the possibility of knock, and can thus reduce or eliminate the need for over-fuelling.
Journal Article

SuperGen on Ultraboost: Variable-Speed Centrifugal Supercharging as an Enabling Technology for Extreme Engine Downsizing

2015-04-14
2015-01-1282
The paper discusses investigations into improving the full-load and transient performance of the Ultraboost extreme downsizing engine by the application of the SuperGen variable-speed centrifugal supercharger. Since its output stage speed is decoupled from that of the crankshaft, SuperGen is potentially especially attractive in a compound pressure-charging system. Such systems typically comprise a turbocharger, which is used as the main charging device, compounded at lower charge mass flow rates by a supercharger used as a second boosting stage. Because of its variable drive ratio, SuperGen can be blended in and out continuously to provide seamless driveability, as opposed to the alternative of a clutched, single-drive-ratio positive-displacement device. In this respect its operation is very similar to that of an electrically-driven compressor, although it is voltage agnostic and can supply other hybrid functionality, too.
Journal Article

Analysis of a Diesel Passenger Car Behavior On-Road and over Certification Duty Cycles

2016-10-17
2016-01-2328
Precise, repeatable and representative testing is a key tool for developing and demonstrating automotive fuel and lubricant products. This paper reports on the first findings of a project that aims to determine the requirements for highly repeatable test methods to measure very small differences in fuel economy and powertrain performance. This will be underpinned by identifying and quantifying the variations inherent to this specific test vehicle, both on-road and on Chassis Dynamometer (CD), that create a barrier to improved testing methods. In this initial work, a comparison was made between on-road driving, the New European Drive Cycle (NEDC) and World harmonized Light-duty Test Cycle (WLTC) cycles to understand the behavior of various vehicle systems along with the discrepancies that can arise owing to the particular conditions of the standard test cycles.
Technical Paper

Control-Oriented Modelling of a Wankel Rotary Engine: A Synthesis Approach of State Space and Neural Networks

2020-04-14
2020-01-0253
The use of Wankel rotary engines as a range extender has been recognised as an appealing method to enhance the performance of Hybrid Electric Vehicles (HEV). They are effective alternatives to conventional reciprocating piston engines due to their considerable merits such as lightness, compactness, and higher power-to-weight ratio. However, further improvements on Wankel engines in terms of fuel economy and emissions are still needed. The objective of this work is to investigate the engine modelling methodology that is particularly suitable for the theoretical studies on Wankel engine dynamics and new control development. In this paper, control-oriented models are developed for a 225CS Wankel rotary engine produced by Advanced Innovative Engineering (AIE) UK Ltd. Through a synthesis approach that involves State Space (SS) principles and the artificial Neural Networks (NN), the Wankel engine models are derived by leveraging both first-principle knowledge and engine test data.
Journal Article

Octane Appetite: The Relevance of a Lower Limit to the MON Specification in a Downsized, Highly Boosted DISI Engine

2014-10-13
2014-01-2718
Market demand for high performance gasoline vehicles and increasingly strict government emissions regulations are driving the development of highly downsized, boosted direct injection engines. The in-cylinder temperatures and pressures of these emerging technologies tend to no longer adhere to the test conditions defining the RON and MON octane rating scales. This divergence between fuel knock rating methods and fuel performance in modern engines has previously led to the development of an engine and operating condition dependent scaling factor, K, which allows for extrapolation of RON and MON values. Downsized, boosted DISI engines have been generally shown to have negative K-values when knock limited, indicating a preference for fuels of higher sensitivity and challenging the relevance of a lower limit to the MON specification.
Technical Paper

Potential of a Controllable Engine Cooling System to Reduce NOx Emissions in Diesel Engines

2004-03-08
2004-01-0054
This paper investigates the potential for reduced NOx emissions from the integration of thermal factors into the Diesel engine calibration process. NOx emissions from Diesel engines have been shown to be sensitive to engine operating temperature, which is directly related to the level of cooling applied to the engine, in addition to the main engine operating parameters such as injection timing and EGR ratio. Experimental engine characterization of the main engine parameters against coolant temperature set point shows that engine cooling settings can extend the feasible lower limits of fuel consumption and emissions output from Diesel engine. With the adoption of an integrated calibration methodology including engine cooling set point, NOx emissions can be improved by up to 30% at crucial high speed/load operating points seen in the NEDC drive cycle with a minor reduction in fuel economy and small increase in CO output.
Technical Paper

Potential for Fuel Economy Improvements by Reducing Frictional Losses in a Pushing Metal V-Belt CVT

2004-03-08
2004-01-0481
This paper gives an overview of the development of a number of loss models for the pushing metal V-belt CVT. These were validated using a range of experimental data collected from two test rigs. There are several contributions to the torque losses and new models have been developed that are based upon relative motion between belt components and pulley deflections. Belt slip models will be proposed based upon published theory, expanded to take account of new findings from this work. The paper introduces a number of proposals to improve the efficiency of the transmission based on redesign of the belt geometry and other techniques to reduce frictional losses between components. These proposed efficiency improvements have been modelled and substituted into a complete vehicle simulation to show improvements in vehicle fuel economy over a standard European drive cycle.
Technical Paper

Performance Investigations of a Novel Rolling Traction CVT

2001-03-05
2001-01-0874
The Milner CVT is a patented [1] rolling traction transmission offering advantages of high power density and simplicity of construction and operation. A 90 mm diameter prototype variator is described which was sized for a maximum rated input power of 12 kW. Experimental data are presented demonstrating high efficiency and low shift forces. Resistance to overload torque is shown to be exceptional and preliminary durability trials indicate a highly viable concept for series production. Based upon the measured data, characteristics of larger variators are predicted and prospects for automotive applications discussed.
Technical Paper

Integrated Cooling Systems for Passenger Vehicles

2001-03-05
2001-01-1248
Electric coolant pumps for IC engines are under development by a number of suppliers. They offer packaging and flexibility benefits to vehicle manufacturers. Their full potential will not be realised, however, unless an integrated approach is taken to the entire cooling system. The paper describes such a system comprising an advanced electric pump with the necessary flow controls and a supervisory strategy running on an automotive microprocessor. The hardware and control strategy are described together with the simulation developed to allow its calibration and validation before fitting in a B/C class European passenger car. Simulation results are presented which show the system to be controllable and responsive to deliver optimum fuel consumption, emissions and driver comfort.
Technical Paper

Investigation of ‘Sweep’ Mapping Approach on Engine Testbed

2002-03-04
2002-01-0615
Steady state mapping is fundamental to optimizing IC engine operation. Engine variables are set, a predefined settling time elapses, and then engine data are logged. This is an accurate but time consuming approach to engine testing. In contrast the sweep method seeks to speed up data capture by continuously moving the engine through its operating envelope without dwelling. This is facilitated by the enhanced capability of modern test rig control systems. The purpose of this work is to compare the accuracy and repeatability of the sweep approach under experimental conditions, with that of steady state testing. Limiting factors for the accuracy of the sweep approach fall into two categories. Firstly on the instrumentation side - transducers have a characteristic settling time. Secondly on the engine side - thermal and mechanical inertias will mean that instantaneous measurements of engine parameters differ from the steady state values.
Technical Paper

Development of a Low Cost Production Automotive Engine for Range Extender Application for Electric Vehicles

2016-04-05
2016-01-1055
Range Extended Electric Vehicles (REEVs) are gaining popularity due to their simplicity, reduced emissions and fuel consumption when compared to parallel or series/parallel hybrid vehicles. The range extender internal combustion engine (ICE) can be optimised to a number of steady state points which offers significant improvement in overall exhaust emissions. One of the key challenges in such vehicles is to reduce the overall powertrain costs, and OEMs providing REEVs such as the BMW i3 have included the range extender as an optional extra due to increasing costs on the overall vehicle price. This paper discusses the development of a low cost Auxiliary Power Unit (APU) of c.25 kW for a range extender application utilising a 624 cc two cylinder automotive gasoline engine. Changes to the base engine are limited to those required for range extender development purposes and include prototype control system, electronic throttle, redesigned manifolds and calibration on European grade fuel.
Technical Paper

Elucidation of Aircraft Energy Use Through Time-Variant Exergy Analysis

2011-10-18
2011-01-2683
Increases in fuel costs and environmental concerns have in recent years heightened the importance of fuel efficiency as a design consideration in vehicles, especially aircraft. For this reason, a greater understanding of the energy consumption of vehicles is needed, both for design and operational decisions. Exergy, a measure of available work in an imbalance of state, allows systems to be compared on an equal basis with losses and waste being equated to fuel costs. Vehicles and especially aircraft do not operate in steady state as do industrial plants, the traditional subject of exergy analysis. While some analysis of aircraft has been performed in the literature, time-variance has not been addressed, leading to a lack of detail and only very broad conclusions. It is proposed that in order to fully understand aircraft energy use, a fully time-variant analysis must be performed.
Technical Paper

Fixturing and Tooling for Wing Assembly with Reconfigurable Datum System Pickup

2011-10-18
2011-01-2556
The aerospace manufacturing sector is continuously seeking automation due to increased demand for the next generation single-isle aircraft. In order to reduce weight and fuel consumption aircraft manufacturers have increasingly started to use more composites as part of the structure. The manufacture and assembly of composites poses different constraints and challenges compared to the more traditional aircraft build consisting of metal components. In order to overcome these problems and to achieve the desired production rate existing manufacturing technologies have to be improved. New technologies and build concepts have to be developed in order to achieve the rate and ramp up of production and cost saving. This paper investigates how to achieve the rib hole key characteristic (KC) in a composite wing box assembly process. When the rib hole KC is out of tolerances, possibly, the KC can be achieved by imposing it by means of adjustable tooling and fixturing elements.
Technical Paper

Development and Optimisation of an Adaptive Safety Monitor

2018-04-03
2018-01-0867
Fuel economy and emission challenges are pushing automotive OEMs to develop alternative hybrid-electric, and full-electric powertrains. This increases variation in potential powertrain architectures, exacerbating the already complex control software used to coordinate various propulsion devices within the vehicle. Safety of this control software must be ensured through high-integrity software monitoring functions that detect faults and ensure safe mitigating action is taken. With the complexity of the control software, this monitoring functionality has itself become complex, requiring extensive modification for each new powertrain architecture. Significant effort is required to develop, calibrate, and verify to ensure safety (as defined by ISO 26262). But this must also be robust against false fault-detection, thereby maximising vehicle availability to the customer.
Technical Paper

Octane Response of a Highly Boosted Direct Injection Spark Ignition Engine at Different Compression Ratios

2018-04-03
2018-01-0269
Stringent regulations on fuel economy have driven major innovative changes in the internal combustion engine design. (E.g. CAFE fuel economy standards of 54.5 mpg by 2025 in the U.S) Vehicle manufacturers have implemented engine infrastructure changes such as downsizing, direct injection, higher compression ratios and turbo-charging/super-charging to achieve higher engine efficiencies. Fuel properties therefore, have to align with these engine changes in order to fully exploit the possible benefits. Fuel octane number is a key metric that enables high fuel efficiency in an engine. Greater resistance to auto-ignition (knock) of the fuel/air mixture allows engines to be operated at a higher compression ratio for a given quantity of intake charge without severely retarding the spark timing resulting in a greater torque per mass of fuel burnt. This attribute makes a high octane fuel a favorable hydrocarbon choice for modern high efficiency engines that aim for higher fuel economy.
Technical Paper

The Effect of Hydraulic Circuit Design and Control on the Efficiency of a Continuously Variable Transmission

1996-08-01
961797
As part of a larger programme of work on the integrated control of engine and transmissions a study has been made of the control aspects of the transmission with a detailed investigation of the hydraulic circuit. The requirements of the broader programme necessitated an electrical input for the transmission control and a test bed version was successfully modified with electro-hydraulic valves. Attention to detail in the design of the hydraulic circuit and the control of operating pressure can bring significant benefits to the transmission efficiency with consequent beneficial effects on fuel economy. This paper investigates several aspects of the components used and their effect on efficiency, in particular pump sizing. This investigation is illustrated with results from a computer simulation of the system. Possible improvements through a modified control strategy for the belt pressure are also proposed with steady state results obtained experimentally from the test bed transmission.
Technical Paper

A Driver Advisory Tool to Reduce Fuel Consumption

2013-03-10
2012-01-2087
Driver behaviour can strongly affect fuel consumption, and driver training in eco-driving techniques has been shown to reduce fuel consumption by 10% on average. However the effects of this training can be short-lived, so there is an apparent need for continuous monitoring of driver behaviour. This study presents a driver advisory tool which encourages eco-driving, and its evaluation in the field. The system, developed by Ashwoods Automotive Ltd (UK) and the University of Bath (UK), is aimed at fleet operators of light commercial vehicles, where the driver is typically a company employee. A significant strength of the system is that it has been designed for easy integration with the vehicle CAN-bus, reducing complexity and cost. By considering the Inertial Power Surrogate (speed times acceleration) the core algorithm is able to identify behaviour which is likely to increase fuel consumption.
Technical Paper

A New Turboexpansion Concept in a Twin-Charged Engine System

2014-10-13
2014-01-2596
Engines equipped with pressure charging systems are more prone to knock partly due the increased intake temperature. Meanwhile, turbocharged engines when operating at high engine speeds and loads cannot fully utilize the exhaust energy as the wastegate is opened to prevent overboost. The turboexpansion concept thus is conceived to reduce the intake temperature by utilizing some otherwise unexploited exhaust energy. This concept can be applied to any turbocharged engines equipped with both a compressor and a turbine-like expander on the intake loop. The turbocharging system is designed to achieve maximum utilization of the exhaust energy, from which the intake charge is over-boosted. After the intercooler, the turbine-like expander expands the over-compressed intake charge to the required plenum pressure and reduces its temperature whilst recovering some energy through the connection to the crankshaft.
X