Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Studying the Influence of Direct Injection on PCCI Combustion and Emissions at Engine Idle Condition Using Two Dimensional CFD and Stochastic Reactor Model

2008-04-14
2008-01-0021
A detailed chemical model was implemented in the KIVA-3V two dimensional CFD code to investigate the effects of the spray cone angle and injection timing on the PCCI combustion process and emissions in an optical research diesel engine. A detailed chemical model for Primary Reference Fuel (PRF) consisting of 157 species and 1552 reactions was used to simulate diesel fuel chemistry. The model validation shows good agreement between the predicted and measured pressure and emissions data in the selected cases with various spray angles and injection timings. If the injection is retarded to -50° ATDC, the spray impingement at the edge of the piston corner with 100° injection angle was shown to enhance the mixing of air and fuel. The minimum fuel loss and more widely distributed fuel vapor contribute to improving combustion efficiency and lowering uHC and CO emissions in the engine idle condition.
Technical Paper

Simulating a Homogeneous Charge Compression Ignition Engine Fuelled with a DEE/EtOH Blend

2006-04-03
2006-01-1362
We numerically simulate a Homogeneous Charge Compression Ignition (HCCI) engine fuelled with a blend of ethanol and diethyl ether by means of a stochastic reactor model (SRM). A 1D CFD code is employed to calculate gas flow through the engine, whilst the SRM accounts for combustion and convective heat transfer. The results of our simulations are compared to experimental measurements obtained using a Caterpillar CAT3401 single-cylinder Diesel engine modified for HCCI operation. We consider emissions of CO, CO2 and unburnt hydrocarbons as functions of the crank angle at 50% heat release. In addition, we establish the dependence of ignition timing, combustion duration, and emissions on the mixture ratio of the two fuel components. Good qualitative agreement is found between our computations and the available experimental data.
Technical Paper

Dual-Fuel Effects on HCCI Operating Range: Experiments with Primary Reference Fuels

2013-04-08
2013-01-1673
Results from a large set of HCCI experiments performed on a single-cylinder research engine fueled with different mixtures of iso-octane and n-heptane are presented and discussed in this paper. The experiments are designed to scrutinize fuel reactivity effects on the operating range of an HCCI engine. The fuel effects on upper and lower operating limits are measured respectively by the maximum pressure rise rate inside the cylinder and the stability of engine operation as determined by cycle-to-cycle variations in IMEP. Another set of experiments that examine the intake air heating effects on HCCI engine performance, exhaust emissions and operating envelopes is also presented. The effects of fuel reactivity and intake air heating on the HCCI ranges are demonstrated by constructing the operating envelopes for the different test fuels and intake temperatures.
Journal Article

Influence of Injection Timing and Piston Bowl Geometry on PCCI Combustion and Emissions

2009-04-20
2009-01-1102
Premixed Charge Compression Ignition (PCCI), a Low Temperature Combustion (LTC) strategy for diesel engines is of increasing interest due to its potential to simultaneously reduce soot and NOx emissions. However, the influence of mixture preparation on combustion phasing and heat release rate in LTC is not fully understood. In the present study, the influence of injection timing on mixture preparation, combustion and emissions in PCCI mode is investigated by experimental and computational methods. A sequential coupling approach of 3D CFD with a Stochastic Reactor Model (SRM) is used to simulate the PCCI engine. The SRM accounts for detailed chemical kinetics, convective heat transfer and turbulent micro-mixing. In this integrated approach, the temperature-equivalence ratio statistics obtained using KIVA 3V are mapped onto the stochastic particle ensemble used in the SRM.
Technical Paper

HCCI Combustion Control Using Dual-Fuel Approach: Experimental and Modeling Investigations

2012-04-16
2012-01-1117
A dual-fuel approach to control combustion in HCCI engine is investigated in this work. This approach involves controlling the combustion heat release rate by adjusting fuel reactivity according to the conditions inside the cylinder. Experiments were performed on a single-cylinder research engine fueled with different ratios of primary reference fuels and operated at different speed and load conditions, and results from these experiments showed a clear potential for the approach to expand the HCCI engine operation window. Such potential is further demonstrated dynamically using an optimized stochastic reactor model integrated within a MATLAB code that simulates HCCI multi-cycle operation and closed-loop control of fuel ratio. The model, which utilizes a reduced PRF mechanism, was optimized using a multi-objective genetic algorithm and then compared to a wide range of engine data.
Technical Paper

Multi-Objective Optimization of a Kinetics-Based HCCI Model Using Engine Data

2011-08-30
2011-01-1783
A multi-objective optimization scheme based on stochastic global search is developed and used to examine the performance of an HCCI model containing a reduced chemical kinetic mechanism, and to study interrelations among different model responses. A stochastic reactor model of an HCCI engine is used in this study, and dedicated HCCI engine experiments are performed to provide reference for the optimization. The results revealed conflicting trends among objectives normally used in mechanism optimization, such as ignition delay and engine cylinder pressure history, indicating that a single best combination of optimization variables for these objectives did not exist. This implies that optimizing chemical mechanisms to maintain universal predictivity across such conflicting responses will only yield a predictivity tradeoff. It also implies that careful selection of optimization objectives increases the likelihood of better predictivity for these objectives.
X