Refine Your Search

Topic

Author

Search Results

Journal Article

Flow Visualization and Experimental Measurement of Compressor Oil Separator

2018-04-03
2018-01-0067
This article presents basic separation mechanisms with coalescing/impinging separators studied as the add-on to current popular centrifugal designs. The coalescence and impingement of oil on wire mesh and wave-plates are visualized and tested to investigate the impact of geometry and flow conditions on oil separation efficiency. Re-entrainment phenomenon is explained based on the mass balance. Oil mist flow at the swashplate reciprocating compressor discharge is quantified by video processing method to provide detailed information of the oil droplets. The physics behind oil separator is illustrated by visualization and measurement in this study, which gives useful guidelines for oil separator design and operation. The flow visualization shows the details of oil passing through different oil separation structures. Videos are quantified to provide information like droplet size distribution and liquid volume fraction.
Technical Paper

Modeling of an Integrated Internal Heat Exchanger and Accumulator in R744 Mobile Air-Conditioning Applications

2020-04-14
2020-01-0153
Carbon dioxide (CO2 or R744) is a promising next-generation refrigerant for mobile air-conditioning applications (MAC), which has the advantages of good heating performance in cold climates and environmental-friendly properties. This paper presents a simulation model of an integrated internal heat exchanger (IHX) and accumulator (Acc) using the finite volume method. The results are validated by a group of experimental data collected with different transcritical R744 mobile air-conditioner and heat pump (MHP) systems, and the error was within ±10%. The impacts of refrigerant mass flow rate and operating temperatures on the heat transfer rate of the IHX, improvement on refrigeration capacity and the liquid level in the Acc were studied. Results show that the net benefits of IHX are significant in AC mode, while it helps preventing flooding of the compressor in MHP mode.
Technical Paper

Controlling Strategy for the Performance and NOx Emissions of the Hydrogen Internal Combustion Engines with a Turbocharger

2020-04-14
2020-01-0256
Hydrogen fuel is a future energy to solve the problems of energy crisis and environmental pollution. Hydrogen internal combustion engines can combine the advantage of hydrogen without carbon pollution and the main basic structure of the traditional engines. However, the power of the port fuel injection hydrogen engines is smaller than the same volume gasoline engine because the hydrogen occupies the volume of the cylinder and reduces the air mass flow. The turbocharger can increase the power of hydrogen engines but also increase the NOx emission. Hence, a comprehensive controlling strategy to solve the contradiction of the power, BTE and NOx emission is important to improve the performance of hydrogen engines. This paper shows the controlling strategy for a four-stroke, 2.3L hydrogen engine with a turbocharger. The controlling strategy divides the operating conditions of the hydrogen engine into six parts according to the engine speeds and loads.
Technical Paper

In-Cylinder Measurements of Liquid Fuel During the Intake Stroke of a Port-Injected Spark Ignition Engine

1997-10-01
972945
The presence and distribution of liquid fuel within an engine cylinder at cold start may adversely affect the hydrocarbon emissions from port-injected, spark ignition engines. Therefore, high speed videos of the liquid fuel entry into the cylinder of an optical engine were recorded in order to assess the effect of various engine operating parameters on the amount of liquid fuel inducted into the cylinder, the sizes of liquid drops present and the distribution of the fuel within the cylinder. A 2.5L, V-6, port-injected, spark ignition engine was modified so that optical access is available throughout the entire volume of one of the cylinders. A fused silica cylinder is sandwiched between the separated block and head of the engine and a “Bowditch-type” piston extension is mounted to the production piston. The Bowditch piston has a fused silica crown so that visualization is possible through the top of the piston as well as through the transparent cylinder.
Technical Paper

Modeling Stochastic Performance and Random Failure

2007-07-09
2007-01-3027
High costs and extreme risks prevent the life testing of NASA hardware. These unavoidable limitations prevent the determination of sound reliability bounds for NASA hardware; thus the true risk assumed in future missions is unclear. A simulation infrastructure for determining these risks is developed in a configurable format here. Positive preliminary results in preparation for validation testing are reported. A stochastic filter simulates non-deterministic output from the various unit processes. A maintenance and repair module has been implemented with several levels of complexity. Two life testing approaches have been proposed for use in future model validation.
Technical Paper

Adaptive Lift Control for a Camless Electrohydraulic Valvetrain

1998-02-23
981029
Camless actuation offers programmable flexibility in controlling engine valve events. However, a full range of engine benefits will only be available, if the actuation system can control lift profile characteristics within a particular lift event. Control of the peak value of valve lift is a first step in controlling the profile. The paper presents an adaptive feedback control of valve lift for a springless electrohydraulic valvetrain. The adaptive control maintains peak value of lift in presence of variations in engine speed, hydraulic fluid temperature and manufacturing variability of valve assemblies. The control design includes a reduced-order model of the system dynamics. Experimental results show dynamic behavior under various operating and environmental conditions and demonstrate advantages of adaptive control over the non-adaptive type.
Technical Paper

Model to Predict Hydraulic Pump Requirements for an Off-Road Vehicle

1990-09-01
901622
This paper describes and discusses a computer model that can be used to predict the hydraulic pump requirements of an excavator necessary to meet the specified productivity levels for a given set of design conditions. The model predicts the hydraulic cylinder flow rates, pressures, and power necessary to sustain a given work cycle. The study compares the results from a simulation of the excavator with actual test data obtained from a test vehicle taken during a typical work cycle.
Technical Paper

Smokeless Combustion within a Small-Bore HSDI Diesel Engine Using a Narrow Angle Injector

2007-04-16
2007-01-0203
Combustion processes employing different injection strategies in a High-Speed Direct Inject (HSDI) diesel engine were investigated using a narrow angle injector (70 degree). Whole-cycle combustion was visualized using a high-speed digital video camera. The liquid spray evolution process was imaged by the Mie-scattering technique. Different injection strategies were employed in this study including early pre-Top Dead Center (TDC) injection, post-TDC injection, multiple injection strategies with an early pre-TDC injection and a late post-TDC injection. Smokeless combustion was obtained under some operating conditions. Compared with the original injection angle (150 degree), some new combustion phenomena were observed for certain injection strategies. For early pre-TDC injection strategies, liquid fuel impingement is observed that results in some newly observed fuel film combustion flame (pool fires) following an HCCI-like weak flame.
Technical Paper

Spray and Combustion Visualization in an Optical HSDI Diesel Engine Operated in Low-Temperature Combustion Mode with Bio-diesel and Diesel Fuels

2008-04-14
2008-01-1390
An optically accessible single-cylinder high-speed direct-injection (HSDI) Diesel engine equipped with a Bosch common rail injection system was used to study the spray and combustion processes for European low sulfur diesel, bio-diesel, and their blends at different blending ratio. Influences of injection timing and fuel type on liquid fuel evolution and combustion characteristics were investigated under similar loads. The in-cylinder pressure was measured and the heat release rate was calculated. High-speed Mie-scattering technique was employed to visualize the liquid distribution and evolution. High-speed combustion video was also captured for all the studied cases using the same frame rate. NOx emissions were measured in the exhaust pipe. The experimental results indicated that for all of the conditions the heat release rate was dominated by a premixed combustion pattern and the heat release rate peak became smaller with injection timing retardation for all test fuels.
Technical Paper

Combustion and Emissions of Biodiesel and Diesel Fuels in Direct Injection Compression Ignition Engines using Multiple Injection Strategies

2008-04-14
2008-01-1388
Biodiesel fuels and their blends with diesel are often used to reduce emissions from diesel engines. However, biodiesel has been shown to increase the NOx emissions. Operating a compression ignition engine in low-temperature combustion mode as well as using multiple injections can reduce NOx emissions. Experimental data for biodiesel are compared to those for diesel to show the effect of the biodiesel on the peak pressure, temperature, and emissions. Accurate prediction of biodiesel properties, combined with the KIVA 3V code, is used to investigate the combustion of biodiesel. The volume fraction of the cylinder that has temperatures greater than 2200 K is shown to directly affect the production of oxides of nitrogen. Biodiesel is shown to burn faster during the combustion events, though the ignition delay is often longer for biodiesel compared to diesel.
Technical Paper

Developing Flow Map for Two-Phase R134a after Expansion Device

2008-04-14
2008-01-0736
This paper presents a mapping of developing adiabatic two-phase R134a flow directly after the expansion valve until the flow is “fully developed” in a 15.3mm inner diameter pipe. Flow characteristics of separation distance, flow type in the homogenous region, void fraction as a function of tube length, and fully developed flow region void fraction and regime were quantified and described.
Technical Paper

Adaptive PCCI Combustion Using Micro-Variable Circular-Orifice (MVCO) Fuel Injector – Key Enabling Technologies for High Efficiency Clean Diesel Engines

2009-04-20
2009-01-1528
This paper presents the latest results for a new high efficiency clean diesel combustion system – Adaptive PCCI Combustion (a premixed charge compression ignition mixed-mode combustion) using a micro-variable circular orifice (MVCO) fuel injector. Key characteristics of the new combustion system such as low NOx and soot emissions, high fuel efficiency, increased engine torque are presented through KIVA simulation results. While early premixed charge compression ignition (PCCI) combustion reduces engine-out NOx and soot, it's limited to partial loads by known issues such as combustion control, high HC and CO, and high pressure rise rate, etc. Conventional combustion is well controlled diffusion combustion but comes with high NOx and soot. Leveraging the key merits of PCCI and conventional combustion in a practical engine is both meaningful and challenging.
Technical Paper

Comparing the Operation of a High Speed Direction Injection Engine Using MVCO Injector and Conventional Fuel Injector

2009-04-20
2009-01-0718
The operation of a small bore high speed direct injection (HSDI) engine with a MVCO injector is simulated by the KIVA 3V code, developed by Los Alamos National Laboratory. The MVCO injector extends the range of injection timings over conventional injectors and it extra flexibility in designing injection schemes. Combustion from very early injection is observed with MVCO injections but not with conventional injection. This improves the fuel economy of the engine in terms of lower ISFC. Even better efficiency can be achieved by using biodiesel, which may be due to extra oxygen in the fuel improving the combustion process. Biodiesel sees a longer ignition delay for the initial injection. It also exhibits a faster burning rate and shorter combustion duration. Biodiesel also lowered both NOx and soot emissions. This is consistent with the general observation for soot emissions.
Technical Paper

Effects of Oxygenated Compounds on Combustion and Soot Evolution in a DI Diesel Engine:Broadband Natural Luminosity Imaging

2002-05-06
2002-01-1631
The detailed mechanisms by which oxygenated diesel fuels reduce engine-out soot emissions are not well understood. The literature contains conflicting results as to whether a fuel's overall oxygen content is the only important parameter in determining its soot-reduction potential, or if oxygenate molecular structure or other variables also play significant roles. To begin to resolve this controversy, experiments were conducted at a 1200-rpm, moderate-load operating condition using a modern-technology, 4-stroke, heavy-duty DI diesel engine with optical access. Images of broadband natural luminosity (i.e., light emission without spectral filtering) from the combustion chamber, coupled with heat-release and efficiency analyses, are presented for three test-fuels. One test-fuel (denoted GE80) was oxygenated with tri-propylene glycol methyl ether; the second (denoted BM88) was oxygenated with di-butyl maleate. The overall oxygen contents of these two fuels were matched at 26% by weight.
Technical Paper

Development of a Programmable E/H Valve with a Hybrid Control Algorithm

2002-03-19
2002-01-1463
This paper presents a programmable E/H control valve consisting of five individually proportional flow control valves. With a hybrid control algorithm, this valve has programmable valve characteristics, such as adjustable valve deadband and flow control gain, and programmable valve functions, such as different center functions. System analyses and experimental evaluations indicate that this programmable valve is capable of replacing conventional E/H control valves in practical applications.
Technical Paper

Comparison of Linear Roll Dynamics Properties for Various Vehicle Configurations

1992-02-01
920053
The ability to categorize, compare and segregate the roll dynamical behavior of various vehicles from one another is a subject of considerable research interest. A number of comparison paradigms have been developed (static stability index, roll couple methods, etc.), but all suffer from lack of robustness: results developed on the basis of a particular comparison metric are often not able to be generalized across vehicle lines and types, etc., or they simply do not segregate vehicles at all. In addition, most models do not describe vehicle dynamics in sufficient detail, and some contain no dynamics at all (e.g., static stability index = t/2h). In the present work, static stability index, a two-degree-of-freedom roll model and a three-degree-of-freedom roll and handling model were used to locate eigenvalues for a sample of 43 vehicles consisting of (1) passenger cars, (2) light trucks, (3) sport/utility vehicles and (4) minivans.
Technical Paper

Refrigerant Charge Imbalance in a Mobile Reversible Air Conditioning-Heat Pump System

2017-03-28
2017-01-0177
This paper presents the study of refrigerant charge imbalance between A/C (cooling) mode and HP (heating) mode of a mobile reversible system. Sensitivities of cooling and heating capacity and energy efficiency with respect to refrigerant charge were investigated. Optimum refrigerant charge level for A/C mode was found to be larger than that for HP mode, primarily due to larger condenser size in A/C mode. Refrigerant charge retention in components at both modes were measured in the lab by quick close valve method. Modeling of charge retention in heat exchangers was compared to experimental measurements. Effect of charge imbalance on oil circulation was also discussed.
Technical Paper

Regulated and Unregulated Emissions from a Spark Ignition Engine Fueled with Acetone-Butanol-Ethanol (ABE)-Gasoline Blends

2017-10-08
2017-01-2328
Bio-butanol has been widely investigated as a promising alternative fuel. However, the main issues preventing the industrial-scale production of butanol is its relatively low production efficiency and high cost of production. Acetone-butanol-ethanol (ABE), the intermediate product in the ABE fermentation process for producing bio-butanol, has attracted a lot of interest as an alternative fuel because it not only preserves the advantages of oxygenated fuels, but also lowers the cost of fuel recovery for individual component during fermentation. If ABE could be directly used for clean combustion, the separation costs would be eliminated which save an enormous amount of time and money in the production chain of bio-butanol.
Technical Paper

Comparison Study on Combustion and Emission Characteristics of ABE/IBE-Diesel Blends in a Common-Rreail Diesel Engine

2017-10-08
2017-01-2321
Bio-butanol has been considered as a promising alternative fuel for internal combustion engines due to its advantageous physicochemical properties. However, the further development of bio-butanol is inhibited by its high recovery cost and low production efficiency. Hence, the goal of this study is to evaluate two upstream products from different fermentation processes of bio-butanol, namely acetone-butanol-ethanol (ABE) and isopropanol-butanol-ethanol (IBE), as alternative fuels for diesel. The experimental comparison is conducted on a single-cylinder and common-rail diesel engine under various main injection timings (MIT) and equivalent engine load (EEL) conditions. The experimental results show that ABE and IBE significantly affect the combustion phasing. The start of combustion (SOC) is retarded when ABE and IBE are mixed with diesel. Furthermore, the ABE/IBE-diesel blends are more sensitive to the changes in MIT compared with that of pure diesel.
Technical Paper

Study of Biodiesel Combustion in a Constant Volume Chamber with Different Ambient Temperature and Oxygen Concentration

2011-08-30
2011-01-1931
Biodiesel is a widely used biofuel in diesel engines, which is of particular interest as a renewable fuel because it possesses the similar properties as the diesel fuel. The pure soybean biodiesel was tested in an optical constant volume combustion chamber using natural flame luminosity and forward illumination light extinction (FILE) methods to explore the combustion process and soot distribution at various ambient temperatures (800 K and 1000 K) and oxygen concentrations (21%, 16%, 10.5%). Results indicated that, with a lower ambient temperature, the autoignition delay became longer for all three oxygen concentrations and more ambient air was entrained by spray jet and more fuel was burnt by premixed combustion. With less ambient oxygen concentration, the heat release rate showed not only a longer ignition delay but also longer combustion duration.
X