Refine Your Search


Search Results

Technical Paper

Comparing the Operation of an HSDI Engine Using Multiple Injection Schemes with Soybean Biodiesel, Diesel and Their Blends

The KIVA-3V code, developed by Los Alamos National Laboratory, with modifications that improve its capability with biodiesel simulations was used to model the operation of an HSDI engine using blends of soybean biodiesel and diesel. Biodiesel and their blends with diesel are frequently used to reduce emissions from diesel engines, although previous studies showed that biodiesel may increase NOx emission. The paradox may be resolved by running the engine in low temperature combustion mode with biodiesel/diesel blends, as low temperature combustion simultaneously reduced NOx and soot. The modified KIVA code predicts the major combustion characteristics: peak combustion pressure, heat release rate and ignition timing accurately when compared with experimental measurements. It also correctly predicts the trend of NOx emissions. It was observed that the cylinder temperature distribution has a strong effect on emission levels.
Technical Paper

Comparing the Operation of a High Speed Direction Injection Engine Using MVCO Injector and Conventional Fuel Injector

The operation of a small bore high speed direct injection (HSDI) engine with a MVCO injector is simulated by the KIVA 3V code, developed by Los Alamos National Laboratory. The MVCO injector extends the range of injection timings over conventional injectors and it extra flexibility in designing injection schemes. Combustion from very early injection is observed with MVCO injections but not with conventional injection. This improves the fuel economy of the engine in terms of lower ISFC. Even better efficiency can be achieved by using biodiesel, which may be due to extra oxygen in the fuel improving the combustion process. Biodiesel sees a longer ignition delay for the initial injection. It also exhibits a faster burning rate and shorter combustion duration. Biodiesel also lowered both NOx and soot emissions. This is consistent with the general observation for soot emissions.
Technical Paper

Macroscopic and Microscopic Characteristics of Flash Boiling Spray with Binary Fuel Mixtures

Flash boiling has drawn much attention recently for its ability to enhance spray atomization and vaporization, while providing better fuel/air mixing for gasoline direct injection engines. However, the behaviors of flash boiling spray with multi-component fuels have not been fully discovered. In this study, isooctane, ethanol and the mixtures of the two with three blend ratios were chosen as the fuels. Measurements were performed with constant fuel temperature while ambient pressures were varied to adjust the superheated degree. Macroscopic and microscopic characteristics of flash boiling spray were investigated using Diffused Back-Illumination (DBI) imaging and Phase Doppler Anemometry (PDA). Comparisons between flash boiling sprays with single component and binary fuel mixtures were performed to study the effect of fuel properties on spray structure as well as atomization and vaporization processes.
Technical Paper

Spray Characteristics of Gasoline-Ethanol Fuel Blends under Flash-Boiling Conditions

The spray structure and vaporization processes of flash-boiling sprays in a constant volume chamber under a wide range of superheated conditions were experimentally investigated by a high speed imaging technique. The Engine Combustion Network’s Spray G injector was used. Four fuels including gasoline, ethanol, and gasoline-ethanol blends E30 and E50 were investigated. Spray penetration length and spray width were correlated to the degree of the superheated degree, which is the ratio of the ambient pressure to saturated vapor pressure (pa/ps). It is found that parameter pa/ps is critical in describing the spray transformation under flash-boiling conditions. Three distinct stages namely the slight flash-boiling, the transition flash-boiling, and the flare flash-boiling are identified to describe the transformation of spray structures.
Technical Paper

Computational Analysis of Biodiesel Combustion in a Low-Temperature Combustion Engine using Well-Defined Fuel Properties

Biodiesel fuel can be produced from a wide range of source materials that affect the properties of the fuel. The diesel engine has become a highly tuned power source that is sensitive to these properties. The objectives of this research were to measure and predict the key properties of biodiesel produced from a broad range of source materials to be used as inputs for combustion modeling; and second to compare the results of the model with and without the biodiesel fuel definition. Substantial differences in viscosity, surface tension, density and thermal conductivity were obtained relative to reference diesel fuels and among the different source materials. The combustion model revealed differences in the temperature and emissions of biodiesel when compared to reference diesel fuel.
Technical Paper

Comparison of Linear Roll Dynamics Properties for Various Vehicle Configurations

The ability to categorize, compare and segregate the roll dynamical behavior of various vehicles from one another is a subject of considerable research interest. A number of comparison paradigms have been developed (static stability index, roll couple methods, etc.), but all suffer from lack of robustness: results developed on the basis of a particular comparison metric are often not able to be generalized across vehicle lines and types, etc., or they simply do not segregate vehicles at all. In addition, most models do not describe vehicle dynamics in sufficient detail, and some contain no dynamics at all (e.g., static stability index = t/2h). In the present work, static stability index, a two-degree-of-freedom roll model and a three-degree-of-freedom roll and handling model were used to locate eigenvalues for a sample of 43 vehicles consisting of (1) passenger cars, (2) light trucks, (3) sport/utility vehicles and (4) minivans.
Technical Paper

Developing Flow Map for Two-Phase R134a after Expansion Device

This paper presents a mapping of developing adiabatic two-phase R134a flow directly after the expansion valve until the flow is “fully developed” in a 15.3mm inner diameter pipe. Flow characteristics of separation distance, flow type in the homogenous region, void fraction as a function of tube length, and fully developed flow region void fraction and regime were quantified and described.
Technical Paper

Combustion and Emissions of Biodiesel and Diesel Fuels in Direct Injection Compression Ignition Engines using Multiple Injection Strategies

Biodiesel fuels and their blends with diesel are often used to reduce emissions from diesel engines. However, biodiesel has been shown to increase the NOx emissions. Operating a compression ignition engine in low-temperature combustion mode as well as using multiple injections can reduce NOx emissions. Experimental data for biodiesel are compared to those for diesel to show the effect of the biodiesel on the peak pressure, temperature, and emissions. Accurate prediction of biodiesel properties, combined with the KIVA 3V code, is used to investigate the combustion of biodiesel. The volume fraction of the cylinder that has temperatures greater than 2200 K is shown to directly affect the production of oxides of nitrogen. Biodiesel is shown to burn faster during the combustion events, though the ignition delay is often longer for biodiesel compared to diesel.
Technical Paper

Real-Time Modeling of Liquid Cooling Networks in Vehicle Thermal Management Systems

This paper describes a ‘toolbox’ for modeling liquid cooling system networks within vehicle thermal management systems. Components which can be represented include pumps, coolant lines, control valves, heat sources and heat sinks, liquid-to-air and liquid-to-refrigerant heat exchangers, and expansion tanks. Network definition is accomplished through a graphical user interface, allowing system architecture to be easily modified. The elements of the toolbox are physically based, so that the models can be applied before hardware is procured. The component library was coded directly into MATLAB / SIMULINK and is intended for control system development, hardware-in-the-loop (HIL) simulation, and as a system emulator for on-board diagnostics and controls purposes. For HIL simulation and on-board diagnostics and controls, it is imperative that the model run in real-time.
Technical Paper

Reconfigurable Control System Design for Future Life Support Systems

A reconfigurable control system is an intelligent control system that detects faults within the system and adjusts its performance automatically to avoid mission failure, save lives, and reduce system maintenance costs. The concept was first successfully demonstrated by NASA between December 1989 and March 1990 on the F-15 flight control system (SRFCS), where software was integrated into the aircraft's digital flight control system to compensate for component loss by reconfiguring the remaining control loop. This was later adopted in the Boeing X-33. Other applications include modular robotics, reconfigurable computing structure, and reconfigurable helicopters. The motivation of this work is to test such control system designs for future long term space missions, more explicitly, the automation of life support systems.
Technical Paper

A Sensor for Estimating the Liquid Mass Fraction of the Refrigerant Exiting an Evaporator

A traditional method of controlling evaporator superheat in a vapor compression air conditioning system is the thermostatic expansion valve (TXV). Such systems are often used in automotive applications. The TXV depends on superheat to adjust the valve opening. Unfortunately, any amount of superheat causes that evaporator to operate at reduced capacity due to dramatically lower heat transfer coefficients in the superheated region. In addition, oil circulation back to the compressor is impeded. The cold lubricant almost devoid of dissolved refrigerant is quite viscous and clings to the evaporator walls. A system that could control an air conditioner to operate with no superheat would either decrease the size of its existing evaporator while maintaining the same capacity, or potentially increase its capacity with its original evaporator. Also, oil circulation back to the compressor would be improved.
Technical Paper

A Prototype Computer Based Test System to Test Commercial Vehicle Air Brake Systems: Application and Test Results

This paper describes a practical and efficient approach for determining complete transient, as well as steady state response of tractor-trailer air brake systems by recording pushrod displacement and air brake service line pressure as a function to time. The test hardware utilizes easy to fabricate “clip on” transducers to measure pushrod stroke length. Data acquisition is via LABVIEW‚. All transducers are easy to temporarily affix to any tractor- trailer and require no alteration to the vehicle. A complete system check takes less time than manually measuring pushrod stroke as required under FMCSA. This system with one treadle application and release gives digital timing and displacement history of all brakes. Useful information includes: application and release profiles (pushrod velocity), shoe compliance upon seating and crack pressure release points for both tractor and trailer relay valves.
Technical Paper

Injector Nozzle Coking With Oxygenated Diesel

The use of substances other than petroleum based fuels for power sources is not a new concept. Prior to the advent of petroleum fueled vehicles numerous other substances were used to create mobile sources of power. As the world's petroleum supply dwindles, alternative fuel sources are sought after to replace petroleum fuels. Many industries are particularly interested in the development of renewable fuel sources, or biologically derived fuel sources, which includes ethanol. The use of No. 2 diesel as well as many alternative fuels in compression ignition engines result in injector coking. Injector coking can severely limit engine performance by limiting the amount of fuel delivered to the combustion chamber and altering the spray pattern. Injector tip coking is also one of the most sensitive measures of diesel fuel quality [1]. A machine vision system was implemented to quantify injector coking accumulation when a compression ignition engine was fueled with oxydiesel.
Technical Paper

Automated Guidance Control for Agricultural Tractor Using Redundant Sensors

The development of automated guidance for agricultural tractors has addressed several basic and applied issues of agricultural equipment automation. Basic analyses have included the dynamics of steering systems and posture sensors for guidance. Applied issues have evaluated the potential of several commercial sensing systems and a commercial mechanical guidance system. A research platform has been developed based on a Case 7220 Magnum1 2-wheel drive agricultural tractor. An electrohydraulic steering system was used and characterized in support of automated guidance control. Posture sensing methods were developed using GPS, geomagnetic direction sensors (GDS), inertial, and machine vision sensing systems. Sensor fusion of GPS-inertial-machine vision and GPS-GDS-machine vision provided the most flexible and accurate guidance and capable for operation under dynamically changing field conditions.
Technical Paper

Methane Jet Penetration in a Direct-Injection Natural Gas Engine

A direct-injection natural gas (DING) engine was modified for optical access to allow the use of laser diagnostic techniques to measure species concentrations and temperatures within the cylinder. The injection and mixing processes were examined using planar laser-induced fluorescence (PLIF) of acetone-seeded natural gas to obtain qualitative maps of the fuel/air ratio. Initial acetone PLIF images were acquired in a quiescent combustion chamber with the piston locked in a position corresponding to 90° BTDC. A series of single shot images acquired in 0.1 ms intervals was used to measure the progression of one of the fuel jets across the cylinder. Cylinder pressures as high as 2 MPa were used to match the in-cylinder density during injection in a firing engine. Subsequent images were acquired in a motoring engine at 600 rpm with injections starting at 30, 20, and 15° BTDC in 0.5 crank angle degree increments.
Technical Paper

Adaptive Lift Control for a Camless Electrohydraulic Valvetrain

Camless actuation offers programmable flexibility in controlling engine valve events. However, a full range of engine benefits will only be available, if the actuation system can control lift profile characteristics within a particular lift event. Control of the peak value of valve lift is a first step in controlling the profile. The paper presents an adaptive feedback control of valve lift for a springless electrohydraulic valvetrain. The adaptive control maintains peak value of lift in presence of variations in engine speed, hydraulic fluid temperature and manufacturing variability of valve assemblies. The control design includes a reduced-order model of the system dynamics. Experimental results show dynamic behavior under various operating and environmental conditions and demonstrate advantages of adaptive control over the non-adaptive type.
Technical Paper

Atomization Characteristics of Multi-component Bio-fuel Systems under Micro-explosion Conditions

A numerical study of micro-explosion in multi-component droplets is presented. The homogeneous nucleation theory is used in describing the bubble generation process. A modified Rayleigh equation is then used to calculate the bubble growth rate. The breakup criterion is then determined by applying a linear stability analysis on the bubble-droplet system. After the explosion/breakup, the atomization characteristics, including Sauter mean radius and averaged velocity of the secondary droplets, are calculated from conservation equations. Micro-explosion can be enhanced by introducing biodiesel into the fuel blends of ethanol and tetradecane. Micro-explosion is more likely to occur at high ambient pressure. However, increasing the ambient temperature does not have a significant effect on micro-explosion. There exists an optimal composition in the liquid mixture for micro-explosion.
Technical Paper

Dual-Pump Coherent Anti-Stokes Raman Scattering Measurements in a Direct-Injection Natural Gas Engine

Single-laser-shot measurements of the fuel/air ratio in the cylinder of a motored direct-injection natural gas (DING) engine were obtained using a dual-pump coherent anti-Stokes Raman scattering (CARS) technique capable of simultaneously probing N2 and CH4. The DING engine was modified for optical access and CARS was used to probe the region near the glow plug. Measurements were acquired at eight different probe volume locations with one crank angle degree resolution for injections starting at 30° and 20° BTDC. The CARS data clearly show the arrival of the fuel jet at the probe volume and, from traversing the probe volume, the location of the centerlines of two fuel jets in the vicinity of the glow plug. The CARS measurements also show large fluctuations in fuel concentration on a shot-to-shot basis indicating the presence of large-scale mixing structures within the fuel jets.
Technical Paper

Determining the Value of Vehicle Attributes Using a PC Based Tool

Product engineers and product planners are routinely faced with trade-off decisions involving the cost of adding a product feature or modifying an existing feature versus its added value to the customer. The purpose of this paper is to assess the use of a personal computer (PC) for surveying respondents' willingness to pay (WTP) for four options - two-tone color, 4x4 drive, sporty trim package, and extended cab -- available on the base 1997 Ford F-150 truck. The results show that the respondents' stated WTP reflected the value of the options as determined from their prices and fraction of sales.
Technical Paper

Neural Networks in Engineering Diagnostics

Neural networks are massively parallel computational models for knowledge representation and information processing. The capabilities of neural networks, namely learning, noise tolerance, adaptivity, and parallel structure make them good candidates for application to a wide range of engineering problems including diagnostics problems. The general approach in developing neural network based diagnostic methods is described through a case study. The development of an acoustic wayside train inspection system using neural networks is described. The study is aimed at developing a neural network based method for detection defective wheels from acoustic measurements. The actual signals recorded when a train passes a wayside station are used to develop a neural network based wheel defect detector and to study its performance. Signal averaging and scoring techniques are developed to improve the performance of the constructed neural inspection system.