Refine Your Search

Topic

Author

Search Results

Technical Paper

Modeling of an Integrated Internal Heat Exchanger and Accumulator in R744 Mobile Air-Conditioning Applications

2020-04-14
2020-01-0153
Carbon dioxide (CO2 or R744) is a promising next-generation refrigerant for mobile air-conditioning applications (MAC), which has the advantages of good heating performance in cold climates and environmental-friendly properties. This paper presents a simulation model of an integrated internal heat exchanger (IHX) and accumulator (Acc) using the finite volume method. The results are validated by a group of experimental data collected with different transcritical R744 mobile air-conditioner and heat pump (MHP) systems, and the error was within ±10%. The impacts of refrigerant mass flow rate and operating temperatures on the heat transfer rate of the IHX, improvement on refrigeration capacity and the liquid level in the Acc were studied. Results show that the net benefits of IHX are significant in AC mode, while it helps preventing flooding of the compressor in MHP mode.
Technical Paper

Controlling Strategy for the Performance and NOx Emissions of the Hydrogen Internal Combustion Engines with a Turbocharger

2020-04-14
2020-01-0256
Hydrogen fuel is a future energy to solve the problems of energy crisis and environmental pollution. Hydrogen internal combustion engines can combine the advantage of hydrogen without carbon pollution and the main basic structure of the traditional engines. However, the power of the port fuel injection hydrogen engines is smaller than the same volume gasoline engine because the hydrogen occupies the volume of the cylinder and reduces the air mass flow. The turbocharger can increase the power of hydrogen engines but also increase the NOx emission. Hence, a comprehensive controlling strategy to solve the contradiction of the power, BTE and NOx emission is important to improve the performance of hydrogen engines. This paper shows the controlling strategy for a four-stroke, 2.3L hydrogen engine with a turbocharger. The controlling strategy divides the operating conditions of the hydrogen engine into six parts according to the engine speeds and loads.
Technical Paper

In-Cylinder Measurements of Liquid Fuel During the Intake Stroke of a Port-Injected Spark Ignition Engine

1997-10-01
972945
The presence and distribution of liquid fuel within an engine cylinder at cold start may adversely affect the hydrocarbon emissions from port-injected, spark ignition engines. Therefore, high speed videos of the liquid fuel entry into the cylinder of an optical engine were recorded in order to assess the effect of various engine operating parameters on the amount of liquid fuel inducted into the cylinder, the sizes of liquid drops present and the distribution of the fuel within the cylinder. A 2.5L, V-6, port-injected, spark ignition engine was modified so that optical access is available throughout the entire volume of one of the cylinders. A fused silica cylinder is sandwiched between the separated block and head of the engine and a “Bowditch-type” piston extension is mounted to the production piston. The Bowditch piston has a fused silica crown so that visualization is possible through the top of the piston as well as through the transparent cylinder.
Technical Paper

Smokeless Combustion within a Small-Bore HSDI Diesel Engine Using a Narrow Angle Injector

2007-04-16
2007-01-0203
Combustion processes employing different injection strategies in a High-Speed Direct Inject (HSDI) diesel engine were investigated using a narrow angle injector (70 degree). Whole-cycle combustion was visualized using a high-speed digital video camera. The liquid spray evolution process was imaged by the Mie-scattering technique. Different injection strategies were employed in this study including early pre-Top Dead Center (TDC) injection, post-TDC injection, multiple injection strategies with an early pre-TDC injection and a late post-TDC injection. Smokeless combustion was obtained under some operating conditions. Compared with the original injection angle (150 degree), some new combustion phenomena were observed for certain injection strategies. For early pre-TDC injection strategies, liquid fuel impingement is observed that results in some newly observed fuel film combustion flame (pool fires) following an HCCI-like weak flame.
Technical Paper

Computational Analysis of Biodiesel Combustion in a Low-Temperature Combustion Engine using Well-Defined Fuel Properties

2007-04-16
2007-01-0617
Biodiesel fuel can be produced from a wide range of source materials that affect the properties of the fuel. The diesel engine has become a highly tuned power source that is sensitive to these properties. The objectives of this research were to measure and predict the key properties of biodiesel produced from a broad range of source materials to be used as inputs for combustion modeling; and second to compare the results of the model with and without the biodiesel fuel definition. Substantial differences in viscosity, surface tension, density and thermal conductivity were obtained relative to reference diesel fuels and among the different source materials. The combustion model revealed differences in the temperature and emissions of biodiesel when compared to reference diesel fuel.
Technical Paper

Spray and Combustion Visualization in an Optical HSDI Diesel Engine Operated in Low-Temperature Combustion Mode with Bio-diesel and Diesel Fuels

2008-04-14
2008-01-1390
An optically accessible single-cylinder high-speed direct-injection (HSDI) Diesel engine equipped with a Bosch common rail injection system was used to study the spray and combustion processes for European low sulfur diesel, bio-diesel, and their blends at different blending ratio. Influences of injection timing and fuel type on liquid fuel evolution and combustion characteristics were investigated under similar loads. The in-cylinder pressure was measured and the heat release rate was calculated. High-speed Mie-scattering technique was employed to visualize the liquid distribution and evolution. High-speed combustion video was also captured for all the studied cases using the same frame rate. NOx emissions were measured in the exhaust pipe. The experimental results indicated that for all of the conditions the heat release rate was dominated by a premixed combustion pattern and the heat release rate peak became smaller with injection timing retardation for all test fuels.
Technical Paper

Combustion and Emissions of Biodiesel and Diesel Fuels in Direct Injection Compression Ignition Engines using Multiple Injection Strategies

2008-04-14
2008-01-1388
Biodiesel fuels and their blends with diesel are often used to reduce emissions from diesel engines. However, biodiesel has been shown to increase the NOx emissions. Operating a compression ignition engine in low-temperature combustion mode as well as using multiple injections can reduce NOx emissions. Experimental data for biodiesel are compared to those for diesel to show the effect of the biodiesel on the peak pressure, temperature, and emissions. Accurate prediction of biodiesel properties, combined with the KIVA 3V code, is used to investigate the combustion of biodiesel. The volume fraction of the cylinder that has temperatures greater than 2200 K is shown to directly affect the production of oxides of nitrogen. Biodiesel is shown to burn faster during the combustion events, though the ignition delay is often longer for biodiesel compared to diesel.
Technical Paper

Real-Time Modeling of Liquid Cooling Networks in Vehicle Thermal Management Systems

2008-04-14
2008-01-0386
This paper describes a ‘toolbox’ for modeling liquid cooling system networks within vehicle thermal management systems. Components which can be represented include pumps, coolant lines, control valves, heat sources and heat sinks, liquid-to-air and liquid-to-refrigerant heat exchangers, and expansion tanks. Network definition is accomplished through a graphical user interface, allowing system architecture to be easily modified. The elements of the toolbox are physically based, so that the models can be applied before hardware is procured. The component library was coded directly into MATLAB / SIMULINK and is intended for control system development, hardware-in-the-loop (HIL) simulation, and as a system emulator for on-board diagnostics and controls purposes. For HIL simulation and on-board diagnostics and controls, it is imperative that the model run in real-time.
Technical Paper

Atomization Characteristics of Multi-component Bio-fuel Systems under Micro-explosion Conditions

2008-04-14
2008-01-0937
A numerical study of micro-explosion in multi-component droplets is presented. The homogeneous nucleation theory is used in describing the bubble generation process. A modified Rayleigh equation is then used to calculate the bubble growth rate. The breakup criterion is then determined by applying a linear stability analysis on the bubble-droplet system. After the explosion/breakup, the atomization characteristics, including Sauter mean radius and averaged velocity of the secondary droplets, are calculated from conservation equations. Micro-explosion can be enhanced by introducing biodiesel into the fuel blends of ethanol and tetradecane. Micro-explosion is more likely to occur at high ambient pressure. However, increasing the ambient temperature does not have a significant effect on micro-explosion. There exists an optimal composition in the liquid mixture for micro-explosion.
Technical Paper

Adaptive PCCI Combustion Using Micro-Variable Circular-Orifice (MVCO) Fuel Injector – Key Enabling Technologies for High Efficiency Clean Diesel Engines

2009-04-20
2009-01-1528
This paper presents the latest results for a new high efficiency clean diesel combustion system – Adaptive PCCI Combustion (a premixed charge compression ignition mixed-mode combustion) using a micro-variable circular orifice (MVCO) fuel injector. Key characteristics of the new combustion system such as low NOx and soot emissions, high fuel efficiency, increased engine torque are presented through KIVA simulation results. While early premixed charge compression ignition (PCCI) combustion reduces engine-out NOx and soot, it's limited to partial loads by known issues such as combustion control, high HC and CO, and high pressure rise rate, etc. Conventional combustion is well controlled diffusion combustion but comes with high NOx and soot. Leveraging the key merits of PCCI and conventional combustion in a practical engine is both meaningful and challenging.
Technical Paper

Comparing the Operation of a High Speed Direction Injection Engine Using MVCO Injector and Conventional Fuel Injector

2009-04-20
2009-01-0718
The operation of a small bore high speed direct injection (HSDI) engine with a MVCO injector is simulated by the KIVA 3V code, developed by Los Alamos National Laboratory. The MVCO injector extends the range of injection timings over conventional injectors and it extra flexibility in designing injection schemes. Combustion from very early injection is observed with MVCO injections but not with conventional injection. This improves the fuel economy of the engine in terms of lower ISFC. Even better efficiency can be achieved by using biodiesel, which may be due to extra oxygen in the fuel improving the combustion process. Biodiesel sees a longer ignition delay for the initial injection. It also exhibits a faster burning rate and shorter combustion duration. Biodiesel also lowered both NOx and soot emissions. This is consistent with the general observation for soot emissions.
Technical Paper

Comparing the Operation of an HSDI Engine Using Multiple Injection Schemes with Soybean Biodiesel, Diesel and Their Blends

2009-04-20
2009-01-0719
The KIVA-3V code, developed by Los Alamos National Laboratory, with modifications that improve its capability with biodiesel simulations was used to model the operation of an HSDI engine using blends of soybean biodiesel and diesel. Biodiesel and their blends with diesel are frequently used to reduce emissions from diesel engines, although previous studies showed that biodiesel may increase NOx emission. The paradox may be resolved by running the engine in low temperature combustion mode with biodiesel/diesel blends, as low temperature combustion simultaneously reduced NOx and soot. The modified KIVA code predicts the major combustion characteristics: peak combustion pressure, heat release rate and ignition timing accurately when compared with experimental measurements. It also correctly predicts the trend of NOx emissions. It was observed that the cylinder temperature distribution has a strong effect on emission levels.
Technical Paper

Biomechanical Realism Versus Algorithmic Efficiency: A Trade-off in Human Motion Simulation Modeling

2001-06-26
2001-01-2090
The purpose this paper is to delineate why there exists a trade-off between biomechanical realism and algorithmic efficiency for human motion simulation models, and to illustrate how empirical human movement data and findings can be integrated with novel modeling techniques to overcome such a realism-efficiency tradeoff. We first review three major classes of biomechanical models for human motion simulation. The review of these models is woven together by a common fundamental problem of redundancy—kinematic and/or muscle redundancy. We describe how this problem is resolved in each class of models, and unveil how the trade-off arises, that is, how the computational demand associated with solving the problem is amplified as a model evolves from small scale to large scale, or from less realism to more realism.
Technical Paper

Smart Icing Systems for Aircraft Icing Safety

2003-06-16
2003-01-2100
Aircraft incidents and accidents in icing are often the result of degradation in performance and control. However, current ice sensors measure the amount of ice and not the effect on performance and control. No processed aircraft performance degradation information is available to the pilot. In this paper research is reported on a system to estimate aircraft performance and control changes due to ice, then use this information to automatically operate ice protection systems, provide aircraft envelope protection and, if icing is severe, adapt the flight controls. Key to such a safety system would be he proper communication to, and coordination with, the flight crew. This paper reviews the basic system concept, as well as the research conducted in three critical areas; aerodynamics and flight mechanics, aircraft control and identification, and human factors.
Technical Paper

Iced-Airfoil and Wing Aerodynamics

2003-06-16
2003-01-2098
Past research on airfoil and wing aerodynamics in icing are reviewed. This review emphasizes the periods after the 1978 NASA Lewis workshop that initiated the modern icing research program at NASA and the current period after the 1994 ATR accident where aerodynamics research has been more aircraft safety focused. Research pre-1978 is also briefly reviewed. Following this review, our current knowledge of iced airfoil aerodynamics is presented from a flowfield-physics perspective. This section identifies four classes of ice accretions: roughness, rime ice, horn ice, and spanwise ridge ice. In these sections the key flowfield features such as flowfield separation and reattachment are reviewed and how these contribute to the known aerodynamic effects of these ice shapes. Finally Reynolds number and Mach number effects on iced-airfoil aerodynamics are briefly summarized.
Technical Paper

Feasibility of Modifying an Existing Semi-Trailer Air Suspension Into an Anti-Rollover System

2001-11-12
2001-01-2733
This paper examines the feasibility of modifying an existing semi-trailer air suspension system to function as an anti-rollover system in addition to its normal suspension operation. The semi-trailer model used is a dynamic, two-dimensional system. The anti-rollover system controller is formulated using projective control theory. All other factors being equal, simulations show that use of the modified suspension system decreases the weight shift when the semi-trailer undergoes lateral acceleration. By decreasing weight shift, the modified suspension system decreases the possibility of rollover.
Technical Paper

Effects of Oxygenated Compounds on Combustion and Soot Evolution in a DI Diesel Engine:Broadband Natural Luminosity Imaging

2002-05-06
2002-01-1631
The detailed mechanisms by which oxygenated diesel fuels reduce engine-out soot emissions are not well understood. The literature contains conflicting results as to whether a fuel's overall oxygen content is the only important parameter in determining its soot-reduction potential, or if oxygenate molecular structure or other variables also play significant roles. To begin to resolve this controversy, experiments were conducted at a 1200-rpm, moderate-load operating condition using a modern-technology, 4-stroke, heavy-duty DI diesel engine with optical access. Images of broadband natural luminosity (i.e., light emission without spectral filtering) from the combustion chamber, coupled with heat-release and efficiency analyses, are presented for three test-fuels. One test-fuel (denoted GE80) was oxygenated with tri-propylene glycol methyl ether; the second (denoted BM88) was oxygenated with di-butyl maleate. The overall oxygen contents of these two fuels were matched at 26% by weight.
Technical Paper

An Angle of Attack Correction Scheme for the Design of Low Aspect Ratio Wings With Endplates

2002-12-02
2002-01-3292
Low aspect ratio wings are used extensively on open-wheeled race cars to generate aerodynamic downforce. Consequently, a great deal of effort is invested in obtaining wing profiles that provide high values of lift coefficient. If the wings are designed using 2-D methods, then it is necessary to take into account the change in operating angle of a typical airfoil section that occurs when it operates in the downwash generated by the wing. Accounting for this change during the design phase will ensure that the airfoil sections are optimized for their intended operating conditions. The addition of endplates to the wing serves to counteract the magnitude of the change in operating angle by effectively producing an increase in wing aspect ratio. During the design process at UIUC, an empirical method was used to provide an estimate of the effective aspect ratio of the wing and endplate combination.
Technical Paper

Transient and Steady State Performance Characteristics of a Two-Wheel-Steer and Four-Wheel-Steer Vehicle Model

1991-09-01
911926
Using a three-degree-of-freedom vehicle model (side-slip, yaw and roll degrees of freedom) and a nonlinear, saturating rire model, the behavior of a typical exemplar vehicle (1986 Dodge Lancer Turbo) was simulated. Steady state performance was examined through simulating a skidpad lateral accelerarion maneuver. A lane change maneuver was used to reprcsenr transient performance characteristics. A few simple experiments were conducted wirh rhe exemplar vehicle to establish parameters and verify some performance properties. Results of both steady srare and rransienr simulations showed that four -wheel steer offers lirrle or no demonstrated performance advanrages over two-wheel steer.
Technical Paper

Comparison of Linear Roll Dynamics Properties for Various Vehicle Configurations

1992-02-01
920053
The ability to categorize, compare and segregate the roll dynamical behavior of various vehicles from one another is a subject of considerable research interest. A number of comparison paradigms have been developed (static stability index, roll couple methods, etc.), but all suffer from lack of robustness: results developed on the basis of a particular comparison metric are often not able to be generalized across vehicle lines and types, etc., or they simply do not segregate vehicles at all. In addition, most models do not describe vehicle dynamics in sufficient detail, and some contain no dynamics at all (e.g., static stability index = t/2h). In the present work, static stability index, a two-degree-of-freedom roll model and a three-degree-of-freedom roll and handling model were used to locate eigenvalues for a sample of 43 vehicles consisting of (1) passenger cars, (2) light trucks, (3) sport/utility vehicles and (4) minivans.
X