Refine Your Search

Topic

Search Results

Technical Paper

Parameter Determination and Vehicle Dynamics Modeling for The National Advanced Driving Simulator of the 2006 BMW 330i

2007-04-16
2007-01-0818
The paper discusses the development of a model for the 2006 BMW 330i for the National Advanced Driving Simulator's (NADS) vehicle dynamics simulation, NADSdyna. The front and rear suspensions are independent strut and link type suspensions modeled using recursive rigid-body dynamics formulations. The suspension springs and shock absorbers are modeled as force elements. The paper includes parameters for front and rear semi-empirical tire models used with NADSdyna. Longitudinal and lateral tire force plots are also included. The NADSdyna model provides state-of-the-art high-fidelity handling dynamics for real-time hardware-in-the-loop simulation. The realism of a particular model depends heavily on how the parameters are obtained from the actual physical system. Complex models do not guarantee high fidelity if the parameters used were not properly measured. Methodologies for determining the parameters are detailed in this paper.
Technical Paper

Simulator Study of Heavy Truck Air Disc Brake Effectiveness During Emergency Braking

2008-04-14
2008-01-1498
In crashes between heavy trucks and light vehicles, most of the fatalities are the occupants of the light vehicle. A reduction in heavy truck stopping distance should lead to a reduction in the number of crashes, the severity of crashes, and consequently the numbers of fatalities and injuries. This study made use of the National Advanced Driving Simulator (NADS). NADS is a full immersion driving simulator used to study driver behavior as well as driver-vehicle reactions and responses. The vehicle dynamics model of the existing heavy truck on NADS had been modified with the creation of two additional brake models. The first was a modified S-cam (larger drums and shoes) and the second was an air-actuated disc brake system. A sample of 108 CDL-licensed drivers was split evenly among the simulations using each of the three braking systems. The drivers were presented with four different emergency stopping situations.
Technical Paper

Closed Loop Steering System Model for the National Advanced Driving Simulator

2004-03-08
2004-01-1072
This paper presents the details of the model for the physical steering system used on the National Advanced Driving Simulator. The system is basically a hardware-in-the-loop (steering feedback motor and controls) steering system coupled with the core vehicle dynamics of the simulator. The system's torque control uses cascaded position and velocity feedback and is controlled to provide steering feedback with variable stiffness and dynamic properties. The reference model, which calculates the desired value of the torque, is made of power steering torque, damping function torque, torque from tires, locking limit torque, and driver input torque. The model also provides a unique steering dead-band function that is important for on-center feel. A Simulink model of the hardware/software is presented and analysis of the simulator steering system is provided.
Technical Paper

Parameter Determination and Vehicle Dynamics Modeling for the NADS of the 1998 Chevrolet Malibu

2001-03-05
2001-01-0140
The paper discusses the development of a model for a 1998 Chevrolet Malibu for the National Advanced Driving Simulator’s (NADS) vehicle dynamics simulation, NADSdyna. The Malibu is the third vehicle modeled for the NADS, and this is the third paper dealing with model development. SAE Paper 970564 contains details of the model for the 1994 Ford Taurus and SAE Paper 1999–01-0121 contains details of the model for the 1997 Jeep Cherokee. The front and rear suspensions are independent strut and link type suspensions modeled using recursive rigid body dynamics formulations. The suspension springs and shock absorbers are modeled as elements in the rigid body formulation. To complement the vehicle dynamics for the NADS application, subsystem models that include tire forces, braking, powertrain, aerodynamics, and steering are added to the rigid body dynamics model. The models provide state-of-the-art high fidelity vehicle handling dynamics for real-time simulation.
Technical Paper

Characterization of CIREN

2001-06-04
2001-06-0024
This paper focuses on the overall structure of the Crash Injury Research and Engineering Network (CIREN), how data are collected, and what makes it unique. It discusses how it can be used to expand and enhance the information in other databases. CIREN is a collaborative effort to conduct research on crashes and injuries at nine Level 1 Trauma Centers which are linked by a computer network. Researchers can review data and share expertise, which will lead to a better understanding of crash injury mechanisms and the design of safer vehicles. CIREN data are being used in outreach and education programs on motor vehicle safety. CIREN outreach and education has already been credited with lifesaving information dissemination.
Technical Paper

Simulations of large school bus safety restraints~NHTSA

2001-06-04
2001-06-0226
This paper describes computer crash simulations performed by the National Highway Traffic Safety Administration (NHTSA) under the current research and testing activities on large school bus safety restraints. The simulations of a frontal rigid barrier test and comparative dynamic sled testing for compartmentalization, lap belt, and lap/shoulder belt restraint strategies are presented. School bus transportation is one of the safest forms of transportation in the United States. School age children transported in school buses are safer than children transported in motor vehicles of any other type. Large school buses provide protection because of their size and weight. Further, they must meet minimum Federal motor vehicle safety standards (FMVSSs) mandating compartmentalized seating, improved emergency exits, stronger roof structures and fuel systems, and better bus body joint strength.
Technical Paper

Analysis of the STI Tire Model

2002-05-07
2002-01-1579
The STI (System Technology Inc.) tire model is one of the most important semi-empirical (steady-state) tire models currently applied in the vehicle dynamics simulation software package of the National Advanced Driving Simulator (NADS). The STI tire model is presented originally based on tire contact length directly and the contact length is required to provide. Based on the concepts of nominal slip in both longitudinal and lateral directions, the STI tire model is analyzed and rewritten. It shows that the STI tire model does not actually depend on the contact length. Meanwhile, the model parameters are partially assigned new physical definitions, for example, static/dynamic stiffness and shape factors. Some simplified expressions are given based on further assumption conditions. The simplified expressions are also obtained regarding longitudinal slip at arbitrary speeds (including low speed, zero speed and stand still), which is originally presented by Bernard.
Technical Paper

NHTSA's Rollover Rulemaking Program - Results of Testing and Analysis

1992-02-01
920581
This paper attempts to define and measure factors related to a vehicle's performance that are influential in the causation of rollover accidents. Data are presented which define the rollover involvement rates for many non-vehicular factors. A brief description of the vehicle metrics and the analysis procedures used in the rollover prevention rulemaking program are included along with a set of conclusions. The program evaluated many vehicle metrics related to vehicle rollover, analyzed accidents from 5 states, and compared the two data bases by testing “cause and effect” hypotheses by performing statistical regressions to determine levels of correlation. Location of the crash, urban vs. rural, was a strong predictor of the crash outcome - that is, rollover or non-rollover. Vehicle class and single vehicle accident rate were also statistically significant, as well as, whether or not the vehicle was equipped with anti-lock brakes. Several other driver demographics were significant.
Technical Paper

Antilock Systems for Air-Braked Vehicles

1992-01-01
890113
When a heavy vehicle driver (or in fact a driver of any vehicle) makes a brake application that is too "hard" for conditions - especially when the vehicle is lightly loaded or empty and/or the road is wet or slippery - he is likely to lock some or all of his wheels. Under these conditions, the tractor can jackknife or the trailer can swing out of its lane (if it is a combination-unit vehicle) or the truck can spin out (if it is a single-unit vehicle). Incorporation of an antilock brake system addresses the wheel lock and resultant control loss.
Technical Paper

Adaptive Cruise Control: First Impressions Matter

2017-03-28
2017-01-1382
Advanced driver assistance systems (ADAS) show tremendous promise for increasing safety on our roadways. However, while these technologies are rapidly infiltrating the American passenger vehicle market, many consumers have little to no experience or knowledge of them prior to getting behind the wheel. The Technology Demonstration Study was conducted to evaluate how the ways in which drivers learn about ADAS affect their perceptions of the technologies. This paper investigates drivers’ knowledge of the purpose, function, and limitations of the advanced driver assistance technology of adaptive cruise control (ACC), along with ratings of perceived usefulness, apprehension, and effort required to learn to use ACC.
Technical Paper

Benefits from Heads-Up Lane Departure Warnings Predicts Safety in the Real-World

2016-04-05
2016-01-1443
We examined relative effectiveness of heads-up visual displays for lane departure warning (LDW) 39 younger to middle aged drivers (25-50, mean = 35 years) and 37 older drivers (66-87, mean = 77 years). The LDW included yellow “advisory” visuals in the center screen when the driver started drifting toward the adjacent lane. The visuals turned into red “imminent” when the tires overlapped with the lane markers. The LDW was turned off if the driver activated the turn signal. The visuals could be easily segregated from the background scene, making them salient but not disruptive to the driver’s forward field of view. The visuals were placed adjacent to the left and right lane markers in the lower half of the center screen.
Technical Paper

Virtual Prototyping for Military Vehicle Acquisition

1993-03-01
930848
The emergence of high-speed parallel computers, new mechanical system dynamic simulation formulations, and a range of driver-in-the-loop vehicle simulators is shown to provide a qualitatively new virtual prototyping tool to support military vehicle acquisition. The state-of-the-art of driver-in-the-loop simulation and projections regarding its refinement for use in military vehicle development are outlined, with emphasis on providing a virtual prototyping capability that accounts for operator-vehicle interaction, prior to fabrication and test of prototypes. It is shown that the potential now exists to investigate trade-offs involving vehicle design and operator effectiveness that heretofore required a physical prototype. This will permit the engineering community to optimize the design of military vehicles for the soldier, beginning early in the design and development process and continuing through product improvement.
Technical Paper

Driver Model of Steering Based on Target Position and Orientation

1995-02-01
950166
A driver model of steering is developed using quartic prediction curve and dual sight distances. The target orientation and position information is incorporated into the quartic prediction curve. The model assumes that the driver gazes on a fixed point if it is a point of concern. Upon reaching a minimum distance, the driver's gaze shifts to normal. Driving simulation were conducted on a workstation with stereo vision of road consisting of straight line segments joined with angles of 5, 10 or 15 degrees. Five subjects performed driving simulation with 3 DOF model of a passenger car at the constant speed of 15 m/s. Model parameters are obtained through the curve fitting of the driver model to the experimental data. The results shows that the distances and time delay change predictably according to the road curvature.
Technical Paper

Methodology for Validating the National Advanced Driving Simulator's Vehicle Dynamics (NADSdyna)

1997-02-24
970562
This paper presents an overview of work performed by the National Highway Traffic Safety Administration's (NHTSA) Vehicle Research and Test Center (VRTC) to test, validate, and improve the planned National Advanced Driving Simulator's (NADS) vehicle dynamics simulation. This vehicle dynamics simulation, called NADSdyna, was developed by the University of Iowa's Center for Computer-Aided Design (CCAD) NADSdyna is based upon CCAD's general purpose, real-time, multi-body dynamics software, referred to as the Real-Time Recursive Dynamics (RTRD), supplemented by vehicle dynamics specific submodules VRTC has “beta tested” NADSdyna, making certain that the software both works as computer code and that it correctly models vehicle dynamics. This paper gives an overview of VRTC's beta test work with NADSdyna. The paper explains the methodology used by VRTC to validate NADSdyna.
Technical Paper

Determining the Effects of Brake Degradation

1973-02-01
730190
This paper presents an approach for evaluating the effects of brake system component degradation on vehicle braking performance. The approach involves the use of an inertial brake dynamometer, vehicle computer simulation, and vehicle test. The approach, procedures, and results of the study of the effects of worn friction materials, worn discs and drums, and contaminated brakes are presented.
Technical Paper

Brake System Safety Analysis

1971-02-01
710593
An important new technique in safety engineering for complex systems is the fault tree analysis method. The results of a motor vehicle brake system safety analysis using the fault tree technique are described. The work is directed toward the identification and ranking of brake system failure modes which may be critical as accident causation factors. Safety criticality for each failure mode is defined as the product of probability of occurrence and severity of effect on vehicle control. Failure data for the brake system components are obtained from maintenance and repair records of a large automobile leasing fleet. An effect scale is developed using a method for pooling expert judgements to obtain the relative ranking of various brake faults as to accident causation potential. The fault tree structure is employed to combine probability and effect to obtain the safety criticality value of each fault.
Technical Paper

Improvements in the Simulation of Unrestrained Passengers in Frontal Crashes Using Vehicle Test Data

1986-02-24
860654
The absence of data on the load deflection and energy absorption characteristics of vehicle interiors has been a factor which limits the accuracy of crash victim simulations. A recent test program conducted for the National Highway Traffic Safety Administration has developed data on the interactions of dashboards and knee panels with chests and knees. This paper summarizes the test results for several vehicles and shows how these results are used in simulating vehicle crash tests. Comparisons between crash tests and computer reconstruction using the 3-Dimensional Crash Victim Simulator (CVS-3D) for a late model car are included. The simulation shows good agreement with test and illustrates the application of available static and dynamic test data to improve occupant simulations.
Technical Paper

Simulation of Road Crash Facial Lacerations By Broken Windshields

1987-02-23
870320
The facial laceration test has been proposed as an addition to the dummy injury criteria of Federal Motor Vehicle Safety Standard 208. To better understand laceration conditions as they actually occur, three road crashes of increasing severity, all involving facial laceration by the broken (cracked) windshield and one involving partial ejection, have been simulated physically and analytically. The physical simulations used vehicle test bucks, the Hybrid III head with the chamois facial coverings of the facial laceration test, and a piston - constrained Head Impactor. Computer simulations of the three crashes were also carried out using the CALSPAN 3D “CVS” and the 2D “DRISIM” computer programs. The computer simulations provide insight into the effective mass of the head and body on windshield contact, and the forces, velocities, and accelerations involved.
Technical Paper

An Overview of the National Highway Traffic Safety Administration’s Light Vehicle Antilock Brake Systems Research Program

1999-03-01
1999-01-1286
This paper presents an overview of currently ongoing research by the National Highway Traffic Safety Administration (NHTSA) in the area of light vehicle (passenger cars and light trucks) Antilock Brake Systems (ABS). This paper serves as a lead-in to other papers that will be presented during this session. Several statistical crash data studies have found there to be little or no net safety benefit from the implementation of four-wheel ABS on passenger automobiles. Typically, these studies have found ABS to be associated with: 1. A statistically significant decrease in multi-vehicle crashes. 2. A statistically significant decrease in fatal pedestrian strikes. 3. A statistically significant increase in single-vehicle road departure crashes. The safety disbenefit due to the third finding approximately cancels the safety benefits from the first two findings.
Technical Paper

Driver Crash Avoidance Behavior with ABS in an Intersection Incursion Scenario on Dry Versus Wet Pavement

1999-03-01
1999-01-1288
The National Highway Traffic Safety Administration (NHTSA) has developed its Light Vehicle Antilock Brake Systems (ABS) Research Program in an effort to determine the cause (s) of the apparent increase in fatal single-vehicle run-off-road crashes as vehicles undergo a transition from conventional brakes to ABS. As part of this program, NHTSA conducted research examining driver crash avoidance behavior and the effects of ABS on drivers' ability to avoid a collision in a crash-imminent situation. The study described here was conducted on a test track under dry and wet pavement conditions to examine the effects of ABS versus conventional brakes, ABS brake pedal feedback level, and ABS instruction on driver behavior and crash avoidance performance. This study found that drivers do tend to brake and steer in realistic crash avoidance situations and that excessive steering can occur.
X