Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Optimizing the Design of the Air Flow Orifice or Restrictor for Race Car Applications

2007-08-05
2007-01-3553
Several race car competitions seek to limit engine power through a rule that requires all of the engine combustion air passes through a hole of prescribed diameter. As the approach and departure wall shapes to this hole, usually termed orifice or restrictor are not prescribed, there is opportunity for innovation in these shapes to obtain maximum flow and therefore power. This paper reports measurements made for a range of restrictor types including venturis with conical inlets and outlets of various angles and the application of slotted throats of the ‘Dall tube’ type. Although normal venturis have been optimized as subsonic flow measuring devices with minimum pressure losses, at the limit the flow in the throat is sonic and the down stream shocks associated with flow transition from sub-sonic to sonic are best handled with sudden angular changes and the boundary layer minimized by the corner slots between the convergent and divergent cones.
Technical Paper

Changes to Fim-Motogp Rules to Reduce Costs and Make Racing More Directly Relevant to Road Motorcycle Development

2008-12-02
2008-01-2957
The specific power densities and therefore the level of sophistication and costs of FIM-MOTOGP engines 800 cm3 in capacity have reached levels similar to those of the traditionally much more expensive FIA-Formula One engines and some racing developments have no application at all in the development of production bikes. The aim of the paper is therefore to review FIM-MOTOGP engine rules and make recommendations that could reduce costs and make racing more directly relevant to the development of production bikes while enhancing the significant interest in technical innovation by the sports' fans.
Technical Paper

Performance Comparison of Engine Down-Sized to High Efficieincy ICEs in Optimized Hybrid Vehicles

2012-04-16
2012-01-1033
A real time energy management (EMS) optimizing algorithm is introduced that performs similar to offline dynamic programming (DP) for parallel HEVs. The EMS and the DP are compared, especially with the addition of a local hill climbing technique, to the example performance prediction of the fuel consumption of a 1.67 tonne large car using a 50 kW Honda Insight engine (representing 65% power reduction from standard) as reference. Then the performance of the vehicle in HEV mode, with a parallel 30 kW motor/generator is examined. The average improvement of this vehicle over five drive cycles from around the world is about 50% reduction in fuel consumption. Next the engine is replaced with an advanced SI turbocharged engine with assisted ignition which returns the performance to that expected of this class of car i.e. 0-100 km/h acceleration time of 7 s. This results in a 14% average reduction in fuel consumption across the five cycles compared with the base Honda engine.
Technical Paper

Concept Car - Life Cycle Energy Analysis

1998-02-23
981154
The Australian Concept Car was developed with support from a wide range of industry and government sectors. The estimated energy consumption over the vehicle life cycle is presented relative to a typical Australian Upper Medium Class car fleet. Several assumptions are made about the performance of the prototype car, when extrapolating it to a production counterpart for the comparison. Production methods are one area, covered by a survey of suppliers, and particularly in-service fuel use has had to be estimated using validated procedures. Uncertainties exist about the level of recycling at the end of the vehicles projected life after 225,000 km, leading to defined uncertainties. It is concluded that the concept car will have an energy reduction of 15-17.5% and the life cycle CO2 emissions will be reduced by a little less.
Technical Paper

Benefit from In-service Life Optimized for Minimum CO2 – Comparison of ICEVs, PHEVs, BEVs and FCEVs

2024-04-09
2024-01-2443
The 2023 FISITA White Paper (for which the author was a contributor) on managing in-service emissions and transportation options, to reduce CO2 (CO2-e or carbon footprint) from the existing vehicle fleet, proposed 6 levers which could be activated to complement the rapid transition to vehicles using only renewable energy sources. Another management opportunity reported here is optimizing the vehicle’s life in-service to minimize the life-cycle CO2 impact of a range of present and upcoming vehicles. This study of the US vehicle fleet has quite different travel and composition characteristics to European (EU27) vehicles. In addition, the embodied CO2 is based on ANL’s GREET data rather than EU27 SimaPro methodology. It is demonstrated that in-service, whole-of-life mileage has a significant influence on the optimum life cycle CO2 for BEVs and H2 fuelled FCEVs, as well as ICEs and PHEVs.
X