Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Opportunities for making LPG a clean and low greenhouse emission fuel

2005-05-11
2005-01-2217
It is shown that LPG has the potential to be a main stream fuel because of its low particulate emissions and low greenhouse emission potential. The experimental study reported is directed at minimising the cost of LPG optimised engines through the use of gas phase, throttle body injection in an engine with 11.7 compression ratio up from 9.65 of the base gasoline engine. The advantages of throttle body injection, guided by CFD studies, are extension of the lean limit to lambda 1.6, where NOx is low enough to meet Euro4 emission standards without a reducing catalyst, as deduced from bench test results. Comparison is also made between throttle body and both liquid and gas phase multipoint port injection. Differences in the method of mixing significantly affect engine performance. Notable improvements in emissions and thermal efficiencies were achieved when compared with gasoline, eg.
Technical Paper

Comparing the Performance and Limitations of a Downsized Formula SAE Engine in Normally Aspirated, Supercharged and Turbocharged Modes

2006-11-13
2006-32-0072
This paper compares the performance of a small two cylinder, 430 cm3 engine which has been tested in a variety of normally aspirated (NA) and forced induction modes on 98-RON pump gasoline. These modes are defined by variations in the induction system and associated compression ratio (CR) alterations needed to avoid knock and maximize volumetric efficiency (ηVOL). These modes included: (A) NA with carburetion (B) NA with port fuel injection (PFI) (C) Mildly Supercharged (SC) with PFI (D) Highly Turbocharged (TC) with PFI The results have significant relevance in defining the limitations for small downsized spark ignition (SI) engines, with power increases needed via intake boosting to compensate for the reduced swept volume. Performance is compared in the varying modes with comparisons of brake mean effective pressure (BMEP), brake power, ηVOL, brake specific fuel consumption (BSFC) and brake thermal efficiency (ηTH).
X