Refine Your Search

Topic

Search Results

Journal Article

Development of a Direct Injection High Efficiency Liquid Phase LPG Spark Ignition Engine

2009-06-15
2009-01-1881
Direct Injection (DI) is believed to be one of the key strategies for maximizing the thermal efficiency of Spark Ignition (SI) engines and meet the ever-tightening emissions regulations. This paper explores the use of Liquefied Petroleum Gas (LPG) liquid phase fuel in a 1.5 liter SI four cylinder gasoline engine with double over head camshafts, four valves per cylinder, and centrally located DI injector. The DI injector is a high pressure, fast actuating injector enabling precise multiple injections of the finely atomized fuel sprays. With DI technology, the injection timing can be set to avoid fuel bypassing the engine during valve overlap into the exhaust system prior to combustion. The fuel vaporization associated with DI reduces combustion chamber and charge temperatures, thereby reducing the tendency for knocking. Fuel atomization quality supports an efficient combustion process.
Journal Article

An Integrated Model of Energy Transport in a Reciprocating, Lean Burn, Spark Ignition Engine

2015-04-14
2015-01-1659
This paper presents a combined experimental and numerical method for analysing energy flows within a spark ignition engine. Engine dynamometer data is combined with physical models of in-cylinder convection and the engine's thermal impedances, allowing closure of the First Law of Thermodynamics over the entire engine system. In contrast to almost all previous works, the coolant and metal temperatures are not assumed constant, but rather are outputs from this approach. This method is therefore expected to be most useful for lean burn engines, whose temperatures should depart most from normal experience. As an example of this method, the effects of normalised air-fuel ratio (λ), compression ratio and combustion chamber geometry are examined using a hydrogen-fueled engine operating from λ = 1.5 to λ = 6. This shows large variations in the in-cylinder wall temperatures and heat transfer with respect to λ.
Journal Article

A Comparative Study of a Spark Ignition Engine Running on Hydrogen, Synthesis Gas and Natural Gas

2013-04-08
2013-01-0229
This paper presents an experimental, numerical and theoretical study of the performance of the same spark ignition engine running on four different gaseous fuels: hydrogen, two synthesis gases and natural gas. Measurements of the brake thermal efficiency, the combustion variability, the engine out emissions and the indicated, pumping and friction mean effective pressures are first presented, with particular interest placed on the lean burn performance. Combustion analysis is then undertaken, with the crank angle resolved in-cylinder turbulence and the flame propagation plotted on the so-called ‘Bradley diagram’ for turbulent premixed combustion. The loci of the combustion events on the Bradley diagram are then used to explain the observed, relative performance of the engine running on these four fuels.
Technical Paper

Highly Turbocharging a Restricted, Odd Fire, Two Cylinder Small Engine - Design, Lubrication, Tuning and Control

2006-12-05
2006-01-3637
This paper describes the mechanical component design, lubrication, tuning and control aspects of a restricted, odd fire, highly turbocharged (TC) engine for Formula SAE competition. The engine was specifically designed and configured for the purpose, being a twin cylinder inline arrangement with double overhead camshafts and four valves per cylinder. Most of the engine components were specially cast or machined from billets. A detailed theoretical analysis was completed to determine engine specifications and operating conditions. Results from the analysis indicated a new engine design was necessary to sustain highly TC operation. Dry sump lubrication was implemented after initial oil surge problems were found with the wet sump system during vehicle testing. The design and development of the system is outlined, together with brake performance effects for the varying systems.
Technical Paper

The Feasibility of Downsizing a 1.25 Liter Normally Aspirated Engine to a 0.43 Liter Highly Turbocharged Engine

2007-09-16
2007-24-0083
In this paper, performance, efficiency and emission experimental results are presented from a prototype 434 cm3, highly turbocharged (TC), two cylinder engine with brake power limited to approximately 60 kW. These results are compared to current small engines found in today's automobile marketplace. A normally aspirated (NA) 1.25 liter, four cylinder, modern production engine with similar brake power output is used for comparison. Results illustrate the potential for downsized engines to significantly reduce fuel consumption while still maintaining engine performance. This has advantages in reducing vehicle running costs together with meeting tighter carbon dioxide (CO2) emission standards. Experimental results highlight the performance potential of smaller engines with intake boosting. This is demonstrated with the test engine achieving 25 bar brake mean effective pressure (BMEP).
Technical Paper

Hydrocarbon Emissions from a HAJI Equipped Ultra-lean Burn SI Engine

1998-02-23
980044
Hydrogen Assisted Jet Ignition (HAJI) is a novel method of maintaining combustion stability during ultra-lean operation of conventional, homogeneously charged, SI engines. When operating with HAJI above λ=2, CO and NOx emissions fall to low levels while HC emissions rise to approximately double their stoichiometric value. HC emissions were investigated by operating a HAJI equipped, optically accessible, four-valve single cylinder engine at 600 r/min, wide open throttle (WOT), and from λ=1 to λ=2.4. A fast flame ionisation detector was used to collect real time hydrocarbon concentration data from behind one of the exhaust valves, inside the HAJI pre-chamber, and from near the combustion chamber wall. Flame images were also obtained. Exhaust port sampling shows that the HC concentration during blowdown and early exhaust is increased, but the concentration at the end of exhaust is decreased.
Technical Paper

Optimizing the Design of the Air Flow Orifice or Restrictor for Race Car Applications

2007-08-05
2007-01-3553
Several race car competitions seek to limit engine power through a rule that requires all of the engine combustion air passes through a hole of prescribed diameter. As the approach and departure wall shapes to this hole, usually termed orifice or restrictor are not prescribed, there is opportunity for innovation in these shapes to obtain maximum flow and therefore power. This paper reports measurements made for a range of restrictor types including venturis with conical inlets and outlets of various angles and the application of slotted throats of the ‘Dall tube’ type. Although normal venturis have been optimized as subsonic flow measuring devices with minimum pressure losses, at the limit the flow in the throat is sonic and the down stream shocks associated with flow transition from sub-sonic to sonic are best handled with sudden angular changes and the boundary layer minimized by the corner slots between the convergent and divergent cones.
Technical Paper

Optimized Design of a Cyclic Variability Constrained Lean Limit SI Engine at Optimum NOx and Efficiency Using a PSO Algorithm

2007-08-05
2007-01-3551
In recent times new tools have emerged to aid the optimization of engine design. The particle swarm optimizer, used here is one of these tools. However, applying it to the optimization of the S.I. engine for high efficiency and low NOx emission has shown the preference of ultra lean burn strategy combined with high compression ratios. For combined power, efficiency and emissions benefits, there are two restricting factors, limiting the applicability of this strategy, knocking and cyclic variability. In the ultra lean region, knocking is not an important issue but the variability is a major concern. This paper demonstrates the application of a variability model to limit the search domain for the optimization program. The results show that variability constrains the possible gains in fuel consumption and emission reduction, through optimizing cam phasing, mixture and spark timing. The fuel consumption gain is reduced by about 11% relative.
Technical Paper

Why Liquid Phase LPG Port Injection has Superior Power and Efficiency to Gas Phase Port Injection

2007-08-05
2007-01-3552
This paper reports comparative results for liquid phase versus gaseous phase port injection in a single cylinder engine. It follows previous research in a multi-cylinder engine where liquid phase was found to have advantages over gas phase at most operating conditions. Significant variations in cylinder to cylinder mixture distribution were found for both phases and leading to uncertainty in the findings. The uncertainty was avoided in this paper as in the engine used, a high speed Waukesha ASTM CFR, identical manifold conditions could be assured and MBT spark found for each fuel supply system over a wide range of mixtures. These were extended to lean burn conditions where gaseous fuelling in the multi-cylinder engine had been reported to be at least an equal performer to liquid phase. The experimental data confirm the power and efficiency advantages of liquid phase injection over gas phase injection and carburetion in multi-cylinder engine tests.
Technical Paper

Compression Ratio Effects on Performance, Efficiency, Emissions and Combustion in a Carbureted and PFI Small Engine

2007-08-05
2007-01-3623
This paper compares the performance, efficiency, emissions and combustion parameters of a prototype two cylinder 430 cm3 engine which has been tested in a variety of normally aspirated (NA) modes with compression ratio (CR) variations. Experiments were completed using 98-RON pump gasoline with modes defined by alterations to the induction system, which included carburetion and port fuel injection (PFI). The results from this paper provide some insight into the CR effects for small NA spark ignition (SI) engines. This information provides future direction for the development of smaller engines as engine downsizing grows in popularity due to rising oil prices and recent carbon dioxide (CO2) emission regulations. Results are displayed in the engine speed, manifold absolute pressure (MAP) and CR domains, with engine speeds exceeding 10000 rev/min and CRs ranging from 9 to 13. Combustion analysis is also included, allowing mass fraction burn (MFB) comparison.
Technical Paper

A New Look at Oxygen Enrichment 1) The Diesel Engine

1990-02-01
900344
New concepts in oxygen enrichment of the inlet air have been examined in tests on two direct injection diesel engines, showing: significant reduction in particulate emissions (nearly 80% at full load), increased thermal efficiency if injection timing control is employed, substantial reductions in exhaust smoke under most conditions, ability to burn inferior quality fuels which is economically very attractive and achivement of turbo-charged levels of output with consequential benefits of increased power/mass and improved thermal efficiency. The replacement of an engine's turbocharger and intercooling system with a smaller turbocharger and polymeric membrane elements to supply the oxygen enriched stream should allow improved transient response. NOx emission remain a problem and can only be reduced to normally aspirated engine levels at some efficiency penalty.
Technical Paper

Comparing the Performance and Limitations of a Downsized Formula SAE Engine in Normally Aspirated, Supercharged and Turbocharged Modes

2006-11-13
2006-32-0072
This paper compares the performance of a small two cylinder, 430 cm3 engine which has been tested in a variety of normally aspirated (NA) and forced induction modes on 98-RON pump gasoline. These modes are defined by variations in the induction system and associated compression ratio (CR) alterations needed to avoid knock and maximize volumetric efficiency (ηVOL). These modes included: (A) NA with carburetion (B) NA with port fuel injection (PFI) (C) Mildly Supercharged (SC) with PFI (D) Highly Turbocharged (TC) with PFI The results have significant relevance in defining the limitations for small downsized spark ignition (SI) engines, with power increases needed via intake boosting to compensate for the reduced swept volume. Performance is compared in the varying modes with comparisons of brake mean effective pressure (BMEP), brake power, ηVOL, brake specific fuel consumption (BSFC) and brake thermal efficiency (ηTH).
Technical Paper

Design and Development of a Gasketless Cylinder Head / Block Interface for an Open Deck, Multi Cylinder, Highly Turbocharged Small Engine

2006-11-13
2006-32-0036
This paper describes the design and development of a gasketless interface, which was used successfully to couple an aluminium cylinder head to an open deck design cylinder block. The cylinder block was manufactured from aluminium, featuring shrink fit dry cast iron liners. Extensive CAE modelling was employed to implement the gasketless interface and thus avoid using a conventional metal or fiber based cylinder head gasket. The engine was specifically designed and configured for the purpose, being a 430 cm3, highly turbocharged (TC) twin cylinder in-line arrangement with double overhead camshafts and four valves per cylinder. Most of the engine components were specially cast or machined from billets. The new design removed the conventional head gasket and relied on the correct amount of face pressure generated by interference between the cylinder head and block to seal the interface. This had advantages in improving the structural integrity of the weak open deck design.
Technical Paper

Spatial and Temporal Temperature Distributions in a Spark Ignition Engine Piston at WOT

2007-04-16
2007-01-1436
Two coupled finite element analysis (FEA) programs were written to determine the transient and steady state temperature distribution in a spark ignition engine piston. The programs estimated the temperatures at each crank angle degree (CAD) through warm-up to thermal steady state. A commercial FEA code was used to combine the steady state temperature distribution with the mechanical loads to find the stress response at each CAD for one complete cycle. The first FEA program was a very fast and robust non-linear thermal code to estimate spatial and time resolved heat flux from the combustion chamber to the aluminum alloy piston crown. This model applied the energy conservation equation to the near wall gas and includes the effects of turbulence, a propagating heat source, and a quench layer allowing estimates of local, instantaneous near-wall temperature gradients and the resulting heat fluxes.
Technical Paper

Highly Turbocharging a Flow Restricted Two Cylinder Small Engine - Turbocharger Development

2007-04-16
2007-01-1562
This paper describes the turbocharger development of a restricted 430 cm3 odd firing two cylinder engine. The downsized test engine used for development was specifically designed and configured for Formula SAE, SAE's student Formula race-car competition. A well recognised problem in turbocharging Formula SAE engines arises from the rules, which dictate that the throttle and air intake restrictor must be on the suction side of the compressor. As a consequence of upstream throttling, oil from the compressor side seal assembly is drawn into the inlet manifold. The development process used to solve the oil consumption issue for a Garrett GT-12 turbocharger is outlined, together with cooling and control issues. The development methodology used to achieve high pressure ratio turbocharging is discussed, along with exhaust manifold development and operating limitations. This includes experimental and modeling results for both pulse and constant pressure type turbocharging.
Technical Paper

The Always Lean Burn Spark Ignition (ALSI) Engine – Its Performance and Emissions

2009-04-20
2009-01-0932
This paper is based on extensive experimental research with lean burn, high compression ratio engines using LPG, CNG and gasoline fuels. It also builds on recent experience with highly boosted spark ignition gasoline and LPG engines and single cylinder engine research used for model calibration. The final experimental foundation is an evaluation of jet assisted ignition that generally allows a lean mixture shift of more than one unit in lambda with consequential benefits of improved thermal efficiency and close to zero NOx. The capability of an ultra lean burn spark ignition engine is described. The concept is operation at air-fuel ratios similar to the diesel engine but with essentially homogenous charge, although some stratification may be desirable. To achieve high thermal efficiency this engine has optimized compression ratio but with variable valve timing which enables reduction in the effective compression ratio when desirable.
Technical Paper

Exploring the Charge Composition of SI Engine Lean Limits

2009-04-20
2009-01-0929
In this paper the experimental performance of the lean limits is examined for two different types of engines the first a dedicated LPG high compression ratio 2-valve per cylinder engine (Ford of Australia MY 2001 AU Falcon) and the second a gasoline moderate compression 4-valve per cylinder variant of the same engine (Ford of Australia MY 2006 BF Falcon). The in-cylinder composition at the lean limit over a range of steady state operating conditions is estimated using a quasi-dimensional model. This makes it possible to take into account the effects of both residual fraction and fresh charge diluents (EGR and excess air) that allow the exploration of a modeled lean limit performance [1, 2]. The results are compared to the predictions from a model for combustion variability applied to the quasi-dimensional model operating in optimization mode.
Technical Paper

Top Land Crevice and Piston Deflection Effects on Combustion in a High Speed Rotary Valve Engine

2008-12-02
2008-01-3005
The Bishop Rotary Valve (BRV) has the opportunity for greater breathing capacity than conventional poppet valve engines. However the combustion chamber shape is different from conventional engine with no opportunity for a central spark plug. This paper reports the development of a combustion analysis and design model using KIVA-3V code to locate the ignition centers and to perform sensitivity analysis to several design variables. Central to the use of the model was the tuning of the laminar Arrhenius model constants to match the experimental pressure data over the speed range 13000-20000 rpm. Piston ring crevices lands and valve crevices is shown to be an important development area and connecting rod piston stretch has also been accommodated in the modeling. For the proposed comparison, a conventional 4 valve per cylinder poppet valve engine of nearly equal IMEP has been simulated with GT-POWER.
Technical Paper

Changes to Fim-Motogp Rules to Reduce Costs and Make Racing More Directly Relevant to Road Motorcycle Development

2008-12-02
2008-01-2957
The specific power densities and therefore the level of sophistication and costs of FIM-MOTOGP engines 800 cm3 in capacity have reached levels similar to those of the traditionally much more expensive FIA-Formula One engines and some racing developments have no application at all in the development of production bikes. The aim of the paper is therefore to review FIM-MOTOGP engine rules and make recommendations that could reduce costs and make racing more directly relevant to the development of production bikes while enhancing the significant interest in technical innovation by the sports' fans.
Technical Paper

A Comparison of Four Methods for Determining the Octane Index and K on a Modern Engine with Upstream, Port or Direct Injection

2017-03-28
2017-01-0666
Combustion in modern spark-ignition (SI) engines is increasingly knock-limited with the wide adoption of downsizing and turbocharging technologies. Fuel autoignition conditions are different in these engines compared to the standard Research Octane Number (RON) and Motor Octane Numbers (MON) tests. The Octane Index, OI = RON - K(RON-MON), has been proposed as a means to characterize the actual fuel anti-knock performance in modern engines. The K-factor, by definition equal to 0 and 1 for the RON and MON tests respectively, is intended to characterize the deviation of modern engine operation from these standard octane tests. Accurate knowledge of K is of central importance to the OI model; however, a single method for determining K has not been well accepted in the literature.
X