Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Mechanical Behavior and Failure Mechanism of Nb-Clad Stainless Steel Sheets

2009-04-20
2009-01-1393
Because niobium-clad 304L stainless steel sheets are considered for use as bipolar plates in polymer electrolyte membrane (PEM) fuel cells, their mechanical behavior and failure mechanism are important to be examined. As-rolled and annealed specimens were tested in tension, bending and flattening. The effects of annealing temperature and time on the mechanical behavior and failure mechanism were investigated. Micrographic analyses of bent and flattened specimens showed that the as-rolled specimens have limited ductility and that the annealed specimens can develop an intermetallic layer of thickness of a few microns. The annealed specimens failed due to the breakage of intermetallic layer causing localized necking and the subsequent failure of Nb layer. The springback angles of the as-rolled and annealed specimens were also obtained from guided-bend tests.
Journal Article

Driver Distraction/Overload Research and Engineering: Problems and Solutions

2010-10-19
2010-01-2331
Driver distraction is a topic of considerable interest, with the public debate centering on the use of cell phones and texting while driving. However, the driver distraction/overload issue is really much larger. It concerns specific tasks such as entering destinations on navigation systems, retrieving songs on MP3 players, accessing web pages, checking stocks, editing spreadsheets, and performing other tasks on smart phones, as well as, more generally, using in-vehicle information systems. Five major problems related to distraction/overload research and engineering and their solutions are addressed in this paper.
Journal Article

Design Optimization of a Series Plug-in Hybrid Electric Vehicle for Real-World Driving Conditions

2010-04-12
2010-01-0840
This paper proposes a framework to perform design optimization of a series PHEV and investigates the impact of using real-world driving inputs on final design. Real-World driving is characterized from a database of naturalistic driving generated in Field Operational Tests. The procedure utilizes Markov chains to generate synthetic drive cycles representative of real-world driving. Subsequently, PHEV optimization is performed in two steps. First the optimal battery and motor sizes to most efficiently achieve a desired All Electric Range (AER) are determined. A synthetic cycle representative of driving over a given range is used for function evaluations. Then, the optimal engine size is obtained by considering fuel economy in the charge sustaining (CS) mode. The higher power/energy demands of real-world cycles lead to PHEV designs with substantially larger batteries and engines than those developed using repetitions of the federal urban cycle (UDDS).
Journal Article

Accessibility and User Performance Modeling for Inclusive Transit Bus Design

2014-04-01
2014-01-0463
The purpose of this paper is to demonstrate the impact of low- floor bus seating configuration, passenger load factor (PLF) and passenger characteristics on individual boarding and disembarking (B-D) times -a key component of vehicle dwell time and overall transit system performance. A laboratory study was conducted using a static full-scale mock-up of a low-floor bus. Users of wheeled mobility devices (n=48) and walking aids (n=22), and visually impaired (n=17) and able-bodied (n=17) users evaluated three bus layout configurations at two PLF levels yielding information on B-D performance. Statistical regression models of B-D times helped quantify relative contributions of layout, PLF, and user characteristics viz., impairment type, power grip strength, and speed of ambulation or wheelchair propulsion. Wheeled mobility device users, and individuals with lower grip strength and slower speed were impacted greater by vehicle design resulting in increased dwell time.
Journal Article

A Copula-Based Approach for Model Bias Characterization

2014-04-01
2014-01-0735
Available methodologies for model bias identification are mainly regression-based approaches, such as Gaussian process, Bayesian inference-based models and so on. Accuracy and efficiency of these methodologies may degrade for characterizing the model bias when more system inputs are considered in the prediction model due to the curse of dimensionality for regression-based approaches. This paper proposes a copula-based approach for model bias identification without suffering the curse of dimensionality. The main idea is to build general statistical relationships between the model bias and the model prediction including all system inputs using copulas so that possible model bias distributions can be effectively identified at any new design configurations of the system. Two engineering case studies whose dimensionalities range from medium to high will be employed to demonstrate the effectiveness of the copula-based approach.
Journal Article

Modeling of Failure Modes of Gas Metal Arc Welds in Notched Lap-Shear Specimens of HSLA Steel

2014-04-01
2014-01-0784
The failure modes of gas metal arc welds in notched lap-shear specimens of high strength low alloy (HSLA) steel are investigated. Notched lap-shear specimens of gas metal arc welds were first made. Quasi-static test results of the notched lap-shear specimens showed two failure locations for the welds. The specimens cut from coupons with shorter weld lengths failed near the weld root whereas the specimens cut from coupons with longer weld lengths failed near the weld toe. Micro-hardness tests were conducted in order to provide an assessment of the mechanical properties of the base metal, the heat affected zone, and the weld metal. In order to understand the failure modes of these welds, finite element models were developed with the geometric characteristics of the weld metals and heat affected zones designed to match those of the micrographs of the cross sections for the long and short welds.
Journal Article

Hybrid Finite Element Analysis of a Rotorcraft

2013-05-13
2013-01-1995
The Hybrid FEA method is based on combining conventional Finite Element Analysis (FEA) with Energy Finite Element Analysis (EFEA) for mid-frequency computations. The difficulty in using conventional FEA at higher frequencies originates from requiring a very large number of elements in order to capture the flexible wavelength of the panel members which are present in a structure. In the Hybrid FEA the conventional FEA model is modified by de-activating the bending behavior of the flexible panels in the FEA computations and introducing instead a large number of dynamic impedance elements for representing the omitted bending behavior. The excitation is considered to be applied on the conventional FEA model and the vibration analysis is conducted. The power flow through the dynamic impedance elements is computed and applied as excitation to the EFEA model of the flexible panels. The EFEA analysis computes the vibration of the flexible panels.
Journal Article

Validation Metric for Dynamic System Responses under Uncertainty

2015-04-14
2015-01-0453
To date, model validation metric is prominently designed for non-dynamic model responses. Though metrics for dynamic responses are also available, they are specifically designed for the vehicle impact application and uncertainties are not considered in the metric. This paper proposes the validation metric for general dynamic system responses under uncertainty. The metric makes use of the popular U-pooling approach and extends it for dynamic responses. Furthermore, shape deviation metric was proposed to be included in the validation metric with the capability of considering multiple dynamic test data. One vehicle impact model is presented to demonstrate the proposed validation metric.
Journal Article

Effects of Non-Associated Flow on Residual Stress Distributions in Crankshaft Sections Modeled as Pressure-Sensitive Materials under Fillet Rolling

2015-04-14
2015-01-0602
In this paper, the evolution equation for the active yield surface during the unloading/reloading process based on the pressure-sensitive Drucker-Prager yield function and a recently developed anisotropic hardening rule with a non-associated flow rule is first presented. A user material subroutine based on the anisotropic hardening rule and the constitutive relation was written and implemented into the commercial finite element program ABAQUS. A two-dimensional plane strain finite element analysis of a crankshaft section under fillet rolling was conducted. After the release of the roller, the magnitude of the compressive residual hoop stress for the material with consideration of pressure sensitivity typically for cast irons is smaller than that without consideration of pressure sensitivity. In addition, the magnitude of the compressive residual hoop stress for the pressure-sensitive material with the non-associated flow rule is smaller than that with the associated flow rule.
Journal Article

Stress Intensity Factor Solutions for Gas Metal Arc Welds in Lap-Shear Specimens

2015-04-14
2015-01-0708
In this paper, mode I and mode II stress intensity factor solutions for gas metal arc welds in single lap-shear specimens are investigated by the analytical stress intensity factor solutions and by finite element analyses. Finite element analyses were carried out in order to obtain the computational stress intensity factor solutions for both realistic and idealized weld geometries. The computational results indicate that the stress intensity factor solutions for the realistic welds are lower than the analytical solutions for the idealized weld geometry. The computational results can be used for the estimation of fatigue lives in a fatigue crack growth model under mixed mode loading conditions for gas metal arc welds.
Journal Article

Failure Mode and Fatigue Behavior of Dissimilar Laser Welds in Lap-Shear Specimens of Low Carbon Steel and HSLA Steel Sheets

2015-04-14
2015-01-0706
In this paper, failure modes of dissimilar laser welds in lap-shear specimens of low carbon steel and high strength low alloy (HSLA) steel sheets are investigated based on experimental observations. Micro-hardness tests across the weld zones of dissimilar laser welds were conducted. The hardness values of the fusion zones and heat affected zones are significantly higher than those of the base metals. The fatigue lives and the corresponding failure modes of laser welds as functions of the load ranges are then examined. Optical micrographs of the laser welds before and after failure under quasi-static and cyclic loading conditions are then examined. The failure modes and fatigue behaviors of the laser welds under different loading conditions are different. Under quasi-static loading conditions, a necking failure occurred in the upper low carbon steel sheet far away from the laser weld.
Journal Article

A Practical Simulation Procedure using CFD to Predict Flow Induced Sound of a Turbocharger Compressor

2015-04-14
2015-01-0662
A turbocharger is currently widely used to boost performance of an internal combustion engine. Generally, a turbocharger consists of a compressor which typically is driven by an exhaust turbine. The compressor will influence how the low frequency engine pulsation propagates in the intake system. The compressor will also produce broad-band flow induced sound due to the turbulence flow and high frequency narrowband tonal sound which is associated with rotating blade pressures. In this paper, a practical simulation procedure based on a computational fluid dynamics (CFD) approach is developed to predict the flow induced sound of a turbocharger compressor. In the CFD model of turbocharger compressor, the unsteady, moving wheel, detached eddy simulation (DES) approach are utilized. In this manner, both the broad-band and narrow-band flow induced sound are directly resolved in the CFD computation.
Journal Article

Model-Based Control-Oriented Combustion Phasing Feedback for Fast CA50 Estimation

2015-04-14
2015-01-0868
The highly transient operational nature of passenger car engines makes cylinder pressure based feedback control of combustion phasing difficult. The problem is further complicated by cycle-to-cycle combustion variation. A method for fast and accurate differentiation of normal combustion variations and true changes in combustion phasing is addressed in this research. The proposed method combines the results of a feed forward combustion phasing prediction model and “noisy” measurements from cylinder pressure using an iterative estimation technique. A modified version of an Extended Kalman Filter (EKF) is applied to calculate optimal estimation gain according to the stochastic properties of the combustion phasing measurement at the corresponding engine operating condition. Methods to improve steady state CA50 estimation performance and adaptation to errors are further discussed in this research.
Technical Paper

Impact of CO2 Dilution on Ignition Delay Times of Full Blend Gasolines in a Rapid Compression Machine

2021-09-21
2021-01-1199
Autoignition delay times of two full blend gasoline fuels (high and low RON) were explored in a rapid compression machine. CO2 dilution by mass was introduced at 0%, 15%, and 30% levels with the O2:N2 mole ratio fixed at 1:3.76. This dilution strategy is used to represent exhaust gas recirculation (EGR) substitution in spark ignition (SI) engines by using CO2 as a surrogate for major EGR constituents(N2, CO2, H2O). Experiments were conducted over the temperature range of 650K-900K and at 10 bar and 20 bar compressed pressure conditions for equivalence ratios of (Φ =) 0.6-1.3. The full blend fuels were admitted directly into the combustion chamber for mixture preparation using the direct test chamber (DTC) approach. CO2 addition retarded the autoignition times for the fuels studied here. The retarding effect of the CO2 dilution was more pronounced in the NTC region when compared to the lower and higher temperature range.
Technical Paper

Representing SUV as a 2D Beam Carrying Spring-Mass Systems to Compute Powertrain Bounce Mode

2021-08-31
2021-01-1116
Accurate prediction of in-vehicle powertrain bounce mode is necessary to ensure optimum responses are achieved at driver’s touch points during 4post shake or rough road shake events. But, during the early stages of vehicle development, building a detailed vehicle finite element (FE) model is not possible and often powertrain bounce modes are computed assuming the powertrain to be a stand-alone unit. Studies conducted on FE models of a large SUV with body on frame architecture showed that the stand-alone approach overestimates the powertrain bounce mode. Consequently, there is a need for a simplified version of vehicle model which can be built early on to compute powertrain modes. Previously, representing all the major components as rigid entities, simplified unibody vehicle models have been built to compute powertrain modes. But such an approach would be inaccurate here, for a vehicle with body on frame architecture due to the flexible nature of the frame (even at low frequencies).
Technical Paper

Impact of Miller Cycle Strategies on Combustion Characteristics, Emissions and Efficiency in Heavy-Duty Diesel Engines

2020-04-14
2020-01-1127
This study experimentally investigates the impact of Miller cycle strategies on the combustion process, emissions, and thermal efficiency in heavy-duty diesel engines. The experiments were conducted at constant engine speed, load, and engine-out NOx (1160 rev/min, 1.76 MPa net IMEP, 4.5 g/kWh) on a single cylinder research engine equipped with a fully-flexible hydraulic valve train system. Early Intake Valve Closing (EIVC) and Late Intake Valve Closing (LIVC) timing strategies were compared to a conventional intake valve profile. While the decrease in effective compression ratio associated with the use of Miller valve profiles was symmetric around bottom dead center, the decrease in volumetric efficiency (VE) was not. EIVC profiles were more effective at reducing VE than LIVC profiles. Despite this difference, EIVC and LIVC profiles with comparable VE decrease resulted in similar changes in combustion and emissions characteristics.
Technical Paper

Accelerometer-Based Estimation of Combustion Features for Engine Feedback Control of Compression-Ignition Direct-Injection Engines

2020-04-14
2020-01-1147
An experimental investigation of non-intrusive combustion sensing was performed using a tri-axial accelerometer mounted to the engine block of a small-bore high-speed 4-cylinder compression-ignition direct-injection (CIDI) engine. This study investigates potential techniques to extract combustion features from accelerometer signals to be used for cycle-to-cycle engine control. Selection of accelerometer location and vibration axis were performed by analyzing vibration signals for three different locations along the block for all three of the accelerometer axes. A magnitude squared coherence (MSC) statistical analysis was used to select the best location and axis. Based on previous work from the literature, the vibration signal filtering was optimized, and the filtered vibration signals were analyzed. It was found that the vibration signals correlate well with the second derivative of pressure during the initial stages of combustion.
Technical Paper

Multi-Zone HVAC Development and Validation with Integrated Heated/Vented Seat Control

2020-04-14
2020-01-1247
Vehicle multi-zone automatic Heating, Venting and Air Conditioning (HVAC) is the advanced form of the traditional air conditioning. The advantage of multi-zone automatic HVAC is that it allows the passengers of a vehicle to set a desired temperature for their own zone within the vehicle compartment. This desired temperature is then maintained by the HVAC system, which determines how best to control the available environment data to provide optimal comfort for the passengers. To achieve overall thermal comfort of the occupants in a vehicle, multi-zone HVAC takes things a step further by adding heated steering wheel and heated/vented seats to the overall HVAC control strategy. The heating and cooling of the occupants by this integrated system is performed by complex control algorithms in form of embedded software programs and Private LIN network. This paper describes the approach and tools used to develop, simulate and validate the multi-zone integrated climate control system.
Technical Paper

A DFSS Approach Study on the Effects of Vehicle Cabin Properties on HVAC System’s Cool Down Performance Using 1D Simulation

2020-04-14
2020-01-1258
Due to the increase in heat wave across the globe, maintaining the thermal comfort of passengers in a vehicle is becoming a challenge. Considering global warming, there is a need to shift towards greener refrigerants which in itself causes a marginal degradation in the Heating Ventilation and Air Conditioning (HVAC) system performance. Also the emission norms and regulations demanding for a smaller engine if not for a hybrid or electric vehicle, there is a need for optimally designing the HVAC system since it is directly related with the efficiency of the vehicle and also plays a vital role in the customer comfort. Hence maintaining the comfort level of the passengers needs further exploration and challenging rather than optimizing the HVAC system alone in the competitive market. Conventionally for given system where we need sufficient cooling, the capacity of the components can be increased in order to meet the customer comfort.
Technical Paper

Novel CAE CV Joint Modeling Method for Driveline Half-Shaft at Idle Condition

2020-04-14
2020-01-1265
Idle shake is an important NVH attribute. Vehicles with good NVH characteristics are designed to perform excellent in IDLE and SHAKE conditions. Typically, tactile vibrations at idle are measured at the driver seat and steering wheel. Vibrations caused by engine excitation at idle are passed through several paths to the body structure. The dominant paths being the engine mounts and the half-shafts, either one of them or both can be a major factor influencing the perceived idle vibration in a vehicle. In the past, modeling the half-shafts accurately has been a challenge and often time has been ignored because of modeling complexity. This has led to idle CAE predictions not correlating with test data. The aim of this paper is to describe a finite element modeling method of half-shaft to predict idle vibrations levels.
X