Refine Your Search

Topic

Author

Search Results

Journal Article

In-Use Emissions from Non-road Equipment for EPA Emissions Inventory Modeling (MOVES)

2010-10-05
2010-01-1952
Because of U.S. EPA regulatory actions and the National Academies National Research Council suggestions for improvements in the U.S. EPA emissions inventory methods, the U.S. EPA' Office of Transportation and Air Quality (OTAQ) has made a concerted effort to develop instrumentation that can measure criteria pollutant emissions during the operation of on-road and off-road vehicles. These instruments are now being used in applications ranging from snowmobiles to on-road passenger cars to trans-Pacific container ships. For the betterment of emissions inventory estimation these on-vehicle instruments have recently been employed to measure time resolved (1 hz) in-use gaseous emissions (CO₂, CO, THC, NO ) and particulate matter mass (with teflon membrane filter) emissions from 29 non-road construction vehicles (model years ranging from 1993 to 2007) over a three year period in various counties in Iowa, Missouri, and Kansas.
Journal Article

Subjective and Objective Effects of Driving with LED Headlamps

2014-04-01
2014-01-1985
This study was designed to investigate how the spectral power distribution (SPD) of LED headlamps (including correlated color temperature, CCT) affects both objective driving performance and subjective responses of drivers. The results of this study are not intended to be the only considerations used in choosing SPD, but rather to be used along with results on how SPD affects other considerations, including visibility and glare. Twenty-five subjects each drove 5 different headlamps on each of 5 experimental vehicles. Subjects included both males and females, in older (64 to 85) and younger (20 to 32) groups. The 5 headlamps included current tungsten-halogen (TH) and high-intensity discharge (HID) lamps, along with three experimental LED lamps, with CCTs of approximately 4500, 5500, and 6500 K. Driving was done at night on public roads, over a 21.5-km route that was selected to include a variety of road types.
Journal Article

A Copula-Based Approach for Model Bias Characterization

2014-04-01
2014-01-0735
Available methodologies for model bias identification are mainly regression-based approaches, such as Gaussian process, Bayesian inference-based models and so on. Accuracy and efficiency of these methodologies may degrade for characterizing the model bias when more system inputs are considered in the prediction model due to the curse of dimensionality for regression-based approaches. This paper proposes a copula-based approach for model bias identification without suffering the curse of dimensionality. The main idea is to build general statistical relationships between the model bias and the model prediction including all system inputs using copulas so that possible model bias distributions can be effectively identified at any new design configurations of the system. Two engineering case studies whose dimensionalities range from medium to high will be employed to demonstrate the effectiveness of the copula-based approach.
Technical Paper

Benchmarking a 2018 Toyota Camry UB80E Eight-Speed Automatic Transmission

2020-04-14
2020-01-1286
As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty automotive technologies in support of regulatory and compliance programs, a 2018 Toyota Camry front wheel drive eight-speed automatic transmission was benchmarked. The benchmarking data were used as inputs to EPA’s Advanced Light-duty Powertrain and Hybrid Analysis (ALPHA) vehicle simulation model to estimate GHG emissions from light-duty vehicles. ALPHA requires both detailed engine fuel consumption maps and transmission torque loss maps. EPA’s National Vehicle and Fuels Emissions Laboratory has developed a streamlined, cost-effective in-house method of transmission testing, capable of gathering a dataset sufficient to characterize transmissions within ALPHA. This testing methodology targets the range of transmission operation observed during vehicle testing over EPA’s city and highway drive cycles.
Journal Article

Development and Testing of an Automatic Transmission Shift Schedule Algorithm for Vehicle Simulation

2015-04-14
2015-01-1142
The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created by EPA to estimate greenhouse gas (GHG) emissions from light-duty (LD) vehicles [1]. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types combined with different powertrain technologies. The software tool is a MATLAB/Simulink based desktop application. In order to model the behavior of current and future vehicles, an algorithm was developed to dynamically generate transmission shift logic from a set of user-defined parameters, a cost function (e.g., engine fuel consumption) and vehicle performance during simulation. This paper presents ALPHA's shift logic algorithm and compares its predicted shift points to actual shift points from a mid-size light-duty vehicle and to the shift points predicted using a static table-based shift logic as calibrated to the same vehicle during benchmark testing.
Journal Article

Cost-Effective Reduction of Greenhouse Gas Emissions via Cross-Sector Purchases of Renewable Energy Certificates

2017-03-28
2017-01-0246
Over half of the greenhouse gas (GHG) emissions in the United States come from the transportation and electricity generation sectors. To analyze the potential impact of cross-sector cooperation in reducing these emissions, we formulate a bi-level optimization model where the transportation sector can purchase renewable energy certificates (REC) from the electricity generation sector. These RECs are used to offset emissions from transportation in lieu of deploying high-cost fuel efficient technologies. The electricity generation sector creates RECs by producing additional energy from renewable sources. This additional renewable capacity is financed by the transportation sector and it does not impose additional cost on the electricity generation sector. Our results show that such a REC purchasing regime significantly reduces the cost to society of reducing GHG emissions. Additionally, our results indicate that a REC purchasing policy can create electricity beyond actual demand.
Journal Article

Characterizing Factors Influencing SI Engine Transient Fuel Consumption for Vehicle Simulation in ALPHA

2017-03-28
2017-01-0533
The U.S. Environmental Protection Agency’s (EPA’s) Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created to estimate greenhouse gas (GHG) emissions from light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies, showing realistic vehicle behavior, and auditing of all energy flows in the model. In preparation for the midterm evaluation (MTE) of the 2017-2025 light-duty GHG emissions rule, ALPHA has been refined and revalidated using newly acquired data from model year 2013-2016 engines and vehicles. The robustness of EPA’s vehicle and engine testing for the MTE coupled with further validation of the ALPHA model has highlighted some areas where additional data can be used to add fidelity to the engine model within ALPHA.
Journal Article

Assessing a Hybrid Supercharged Engine for Diluted Combustion Using a Dynamic Drive Cycle Simulation

2018-04-03
2018-01-0969
This study uses full drive cycle simulation to compare the fuel consumption of a vehicle with a turbocharged (TC) engine to the same vehicle with an alternative boosting technology, namely, a hybrid supercharger, in which a planetary gear mechanism governs the power split to the supercharger between the crankshaft and a 48 V 5 kW electric motor. Conventional mechanically driven superchargers or electric superchargers have been proposed to improve the dynamic response of boosted engines, but their projected fuel efficiency benefit depends heavily on the engine transient response and driver/cycle aggressiveness. The fuel consumption benefits depend on the closed-loop engine responsiveness, the control tuning, and the torque reserve needed for each technology. To perform drive cycle analyses, a control strategy is designed that minimizes the boost reserve and employs high rates of combustion dilution via exhaust gas recirculation (EGR).
Journal Article

Low-Order Contact Load Distribution Model for Ball Nut Assemblies

2016-04-05
2016-01-1560
Ball nut assemblies (BNAs) are used in a variety of applications, e.g., automotive, aerospace and manufacturing, for converting rotary motion to linear motion (or vice versa). In these application areas, accurate characterization of the dynamics of BNAs using low-order models is very useful for performance simulation and analyses. Existing low-order contact load models of BNAs are inadequate, partly because they only consider the axial deformations of the screw and nut. This paper presents a low-order load distribution model for BNAs which considers the axial, torsional and lateral deformations of the screw and nut. The screw and nut are modeled as finite element beams, while Hertzian Contact Theory is used to model the contact condition between the balls and raceways of the screw and nut. The interactions between the forces and displacements of the screw and nut and those at the ball-raceway contact points are established using transformation matrices.
Journal Article

Vehicle and Drive Cycle Simulation of a Vacuum Insulated Catalytic Converter

2016-04-05
2016-01-0967
A GT-SUITE vehicle-aftertreatment model has been developed to examine the cold-start emissions reduction capabilities of a Vacuum Insulated Catalytic Converter (VICC). This converter features a thermal management system to maintain the catalyst monolith above its light-off temperature between trips so that most of a vehicle’s cold-start exhaust emissions are avoided. The VICC thermal management system uses vacuum insulation around the monoliths. To further boost its heat retention capacity, a metal phase-change material (PCM) is packaged between the monoliths and vacuum insulation. To prevent overheating of the converter during periods of long, heavy engine use, a few grams of metal hydride charged with hydrogen are attached to the hot side of the vacuum insulation. The GT-SUITE model successfully incorporated the transient heat transfer effects of the PCM using the effective heat capacity method.
Technical Paper

Energy, Fuels, and Cost Analyses for the M1A2 Tank: A Weight Reduction Case Study

2020-04-14
2020-01-0173
Reducing the weight of the M1A2 tank by lightweighting hull, suspension, and track results in 5.1%, 1.3%, and 0.6% tank mass reductions, respectively. The impact of retrofitting with lightweight components is evaluated through primary energy demand (PED), cost, and fuel consumption (FC). Life cycle stages included are preproduction (design, prototype, and testing), material production, part fabrication, and operation. Metrics for lightweight components are expressed as ratios comparing lightweighted and unmodified tanks. Army-defined drive cycles were employed and an FC vs. mass elasticity of 0.55 was used. Depending on the distance traveled, cost to retrofit and operate a tank with a lightweighted hull is 3.5 to 19 times the cost for just operating an unmodified tank over the same distance. PED values for the lightweight hull are 1.1 to 2 times the unmodified tank. Cost and PED ratios decrease with increasing distance.
Journal Article

Maneuver-Based Battery-in-the-Loop Testing - Bringing Reality to Lab

2013-04-08
2013-01-0157
The increasing numbers of hybrid electric and full electric vehicle models currently in the market or in the pipeline of automotive OEMs require creative testing mechanisms to drive down development costs and optimize the efficiency of these vehicles. In this paper, such a testing mechanism that has been successfully implemented at the US Environmental Protection Agency National Vehicle and Fuel Emissions Laboratory (EPA NVFEL) is described. In this testing scheme, the units-under-test consist of a battery pack and its associated battery management system (BMS). The remaining subsystems, components, and environment of the vehicle are virtual and modeled in high fidelity.
Journal Article

Representing GHG Reduction Technologies in the Future Fleet with Full Vehicle Simulation

2018-04-03
2018-01-1273
As part of an ongoing assessment of the potential for reducing greenhouse gas (GHG) emissions of light-duty vehicles, the U.S. Environmental Protection Agency (EPA) has implemented an updated methodology for applying the results of full vehicle simulations to the range of vehicles across the entire fleet. The key elements of the updated methodology explored for this article, responsive to stakeholder input on the EPA’s fleet compliance modeling, include (1) greater transparency in the process used to determine technology effectiveness and (2) a more direct incorporation of full vehicle simulation results. This article begins with a summary of the methodology for representing existing technology implementations in the baseline fleet using EPA’s Advanced Light-duty Powertrain and Hybrid Analysis (ALPHA) full vehicle simulation. To characterize future technologies, a full factorial ALPHA simulation of every conventional technology combination to be considered was conducted.
Technical Paper

Estimation of Body Links Transfer Functions in Vehicle Vibration Environment

2007-06-12
2007-01-2484
Exposure of a driver to vehicle vibration is known to disrupt manual performances, and more specifically affect the speed and accuracy of reaching tasks associated with vehicle operation. The effects of whole body vibration (WBV) can be analyzed as a function of the vibration characteristics of each body link. This information can then be used to identify movement strategies and predict biodynamic responses. Conceptual principles derived from the understanding of human behavior in a vibratory environment can then be used for the design of controls or interfaces adapted for vehicle operation in this context. The transfer functions of individual upper body links were estimated to investigate their biodynamic properties as a function of vehicle vibration frequency and spatial location of targets to be reached. In the present study, fourteen seated participants performed pointing movements to eight targets distributed in the right hemisphere.
Technical Paper

An Integrated Model of Gait and Transition Stepping for Simulation of Industrial Workcell Tasks

2007-06-12
2007-01-2478
Industrial tasks performed by standing workers are among those most commonly simulated using digital human models. Workers often walk, turn, and take acyclic steps as they perform these tasks. Current h uman modeling tools lack the capability to simulate these whole body motions accurately. Most models simulate walking by replaying joint angle trajectories corresponding to a general gait pattern. Turning is simulated poorly if at all, and violations of kinematic constraints between the feet and ground are common. Moreover, current models do not accurately predict foot placement with respect to loads and other hand targets, diminishing the utility of the associated ergonomic analyses. A new approach to simulating stepping and walking in task-oriented activities is proposed. Foot placements and motions are predicted from operator and task characteristics using empirical models derived from laboratory data and validated using field data from an auto assembly plant.
Technical Paper

A Network-Based Expert System for Comparative Analysis of Pulley Assembly Methods

1990-02-01
900818
The pulleys employed in automotive accessory drive systems very often consist of a two piece assembly; a multitude of fastening techniques are used in completing the assembly. There are numerous assembly methods and a variety of distinct pulley configurations dictated by the various automobile manufacturers in accordance with individual accessory drive needs. An expert system is being developed to evaluate the merit of multiple assembly alternatives for a specific pulley application. The expert system provides a consistent evaluation tool for assembly alternatives, balancing the influence of product cost, strength and quality considerations. The knowledge-based system is implemented in an expert system shell called AGNESS (A Generalized Network-based Expert System Shell). The expert system judges the acceptability of various pulley assembly techniques, assigning a high “merit value” to the better designs and proportionately lower values to less desirable designs.
Technical Paper

Intrusion in Side Impact Crashes

2007-04-16
2007-01-0678
Half of the car occupant deaths involved in two-vehicle crashes results from side impact collisions. In an attempt to better understand the role that vehicle mass plays in crashes and injury causation, detailed information from the NASS CDS database on injury source was distributed in three classes: contact with intrusion, contact without intrusion, and restrained acceleration or non-contact. We compared these distributions for belted drivers in side verses frontal crashes. When looking at the type of striking, or bullet, vehicle in near-side impacts, we found that intrusion injuries are more prevalent in cars hit by SUVs and pickups than by other cars. We also looked at the body region injured verses the type of striking vehicle and found head injuries to be slightly more prevalent when the striking vehicle is an SUV or pick-up. Data from the University of Michigan CIREN case studies on side impacts are presented and are consistent with the NASS CDS data.
Technical Paper

Analysis of Temperatures and Stresses in Wet Friction Disks Involving Thermally Induced Changes of Contact Pressure

1998-09-14
982035
Thermal distortions of friction disks caused by frictional heating modify pressure distribution on friction surfaces. Pressure distribution, in turn, determines distribution of generated frictional heat. These interdependencies create a complex thermoelastic system that, under some conditions, may become unstable and may lead to severe pressure concentrations with very high local temperature and stress. The phenomenon is responsible for many common thermal failure modes of friction elements and is known as frictionally excited thermoelastic instability (TEI). In the paper, one of the cases of TEI is investigated theoretically and experimentally. The study involves a two-disk structure with one fiction disk and one matching steel disk that have one friction interface. An unsteady heat conduction problem and an elastic contact problem are modeled as axisymmetric ones and are solved using the finite element method.
Technical Paper

LCI Modeling Challenges and Solutions for a Complex Product System: A Mid-Sized Automobile

1998-11-30
982169
While the results are generally the most exciting aspects of an LCI study, the details of the LCI model that generates the results are equally significant; particularly when modeling the life cycle of an automobile. The modeling challenges faced in conducting the US AMP LCI of a mid-sized vehicle based on the 1995 Lumina, Intrepid and Taurus are highlighted. The number of parts (over 20,000), supply chain complexity, materials composition, and the demanding set of OEM requirements for model features required special LCI methods and solutions. The LCI model and selected results are compared with previous studies, and recommendations for improvements in the USAMP LCI model are also provided. This paper is one of six SAE publications discussing the results and execution of the USCAR AMP Generic Vehicle LCI. The papers in this series are (Overview of results 982160, 982161, 982162, 982168, 982169, 982170).
Technical Paper

Influence of Object Properties on Reaching and Grasping Tasks

2008-06-17
2008-01-1905
This paper investigates how reaching and grasping are affected by various object properties and conditions. While previous studies have examined the effect of object attributes such as size, shape, and distance from the subject, there is a need for quantitative models of finger motions. To accomplish this, the experiment was performed with six subjects where the 3D-coordinates of the finger joints and the wrist of one hand were recorded during reaching and grasping tasks. Finger joint angles at final posture were found to depend on both object size and orientation while wrist postures were changed primarily depending on object orientation. Also, each object orientation caused alteration in relative object location with respect to the hand at final posture. In addition, analysis of temporal variables revealed that it took from 1.06 to 1.30 seconds depending on the object distance to start reaching and complete grasping of the object.
X