Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

An Investigation in Measuring Crank Angle Resolved In-Cylinder Engine Friction Using Instantaneous IMEP Method

2007-10-29
2007-01-3989
This paper describes the measurement of in-cylinder engine friction using the instantaneous IMEP method. This method has been applied to measure in-cylinder friction force in a modern, low friction design production spark ignited engine. An improved mechanical telemetry system has been developed to implement this method. The telemetry system continues to provide excellent data even after 50+ hours of operation at speeds as high as 2000 rpm. Investigated in this study were the primary sources of error associated with this technique. Also presented are the steps taken to minimize the effects of these errors. The refined technique has been subsequently used to obtain piston assembly friction data for both motoring and a limited number of firing cases. The effects of design parameters and operating conditions were investigated.
Technical Paper

Thermal Characterization of Combustion Chamber Deposits on the HCCI Engine Piston and Cylinder Head Using Instantaneous Temperature Measurements

2009-04-20
2009-01-0668
Extending the operating range of the gasoline HCCI engine is essential for achieving desired fuel economy improvements at the vehicle level, and it requires deep understanding of the thermal conditions in the cylinder. Combustion chamber deposits (CCD) have been previously shown to have direct impact on near-wall phenomena and burn rates in the HCCI engine. Hence, the objectives of this work are to characterize thermal properties of deposits in a gasoline HCCI engine and provide foundation for understanding the nature of their impact on autoignition and combustion. The investigation was performed using a single-cylinder engine with re-induction of exhaust instrumented with fast-response thermocouples on the piston top and the cylinder head surface. The measured instantaneous temperature profiles changed as the deposits grew on top of the hot-junctions.
Technical Paper

Design Under Uncertainty and Assessment of Performance Reliability of a Dual-Use Medium Truck with Hydraulic-Hybrid Powertrain and Fuel Cell Auxiliary Power Unit

2005-04-11
2005-01-1396
Medium trucks constitute a large market segment of the commercial transportation sector, and are also used widely for military tactical operations. Recent technological advances in hybrid powertrains and fuel cell auxiliary power units have enabled design alternatives that can improve fuel economy and reduce emissions dramatically. However, deterministic design optimization of these configurations may yield designs that are optimal with respect to performance but raise concerns regarding the reliability of achieving that performance over lifetime. In this article we identify and quantify uncertainties due to modeling approximations or incomplete information. We then model their propagation using Monte Carlo simulation and perform sensitivity analysis to isolate statistically significant uncertainties. Finally, we formulate and solve a series of reliability-based optimization problems and quantify tradeoffs between optimality and reliability.
Technical Paper

Comparing Enhanced Natural Thermal Stratification Against Retarded Combustion Phasing for Smoothing of HCCI Heat-Release Rates

2004-10-25
2004-01-2994
Two methods for mitigating unacceptably high HCCI heat-release rates are investigated and compared in this combined experimental/CFD work. Retarding the combustion phasing by decreasing the intake temperature is found to have good potential for smoothing heat-release rates and reducing engine knock. There are at least three reasons for this: 1) lower combustion temperatures, 2) less pressure rise when the combustion is occurring during the expansion stroke, and 3) the natural thermal stratification increases around TDC. However, overly retarded combustion leads to unstable operation with partial-burn cycles resulting in high IMEPg variations and increased emissions. Enhanced natural thermal stratification by increased heat-transfer rates was explored by lowering the coolant temperature from 100 to 50°C. This strategy substantially decreased the heat-release rates and lowered the knocking intensity under certain conditions.
X