Refine Your Search



Search Results

Technical Paper

An Alternative Method for Generating Ultra-Clean Dilution Air for Engine Emissions Measurements

Many engine exhaust emissions measurements require exhaust dilution. With low-emission engines, there is the possibility for contaminants in the dilution air to contribute artifacts to the emissions measurement. The objectives of this work are to discuss common methods used to clean the dilution air, to present the detailed analysis of a pressure swing adsorption (PSA) system and to compare the performance of the PSA with 2 other systems commonly used to provide dilution air for engine exhaust nanoparticle measurements. The results of the comparison are discussed in context with some emissions measurements that require exhaust dilution.
Technical Paper

The Advanced Design of a Liquid Cooling Garment Through Long-Term Research: Implications of the Test Results on Three Different Garments

The most recent goal of our research program was to identify the optimal features of each of three garments to maintain core temperature and comfort under intensive physical exertion. Four males and 2 females between the ages of 22 and 46 participated in this study. The garments evaluated were the MACS-Delphi, Russian Orlan, and NASA LCVG. Subjects were tested on different days in 2 different environmental chamber temperature/humidity conditions (24°C/H∼28%; 35°C/H∼20%). Each session consisted of stages of treadmill walking/running (250W to 700W at different stages) and rest. In general, the findings showed few consistent differences among the garments. The MACS-Delphi was better able to maintain subjects within a skin and core temperature comfort zone than was evident in the other garments as indicated by a lesser fluctuation in temperatures across physical exertion levels.
Technical Paper

CVT Auto Cruise Ratio Control Using Adaptive Sliding Mode Control

Cruise control is one of the most critical issues that manufacturers concern about. But last many researches just focused on engine side control with general step transmission. Continuously Variable Transmissions (CVT) can cover a wide range of ratios continuously. This makes it possible to operate a combustion engine in more efficient working points than stepped transmission. With this merit, fuel optimal cruise control by CVT ratio control is possible with precise longitudinal dynamic model. Estimation of longitudinal load such as road slope and rolling resistance is essential for precise cruise control of automotive vehicle. In this paper, using model based road slope estimation method with gravity sensor, precise longitudinal dynamic model of automotive vehicle is presented. Real-time adaptive algorithm is also implemented for detecting external driving condition change and compensating bias of g-sensor.
Technical Paper

Synchronous, Simultaneous Optimization of Ignition Timing and Air-Fuel Ratio in a Gas-Fueled Spark Ignition Engine

A two-dimensional optimization process which simultaneously adjusts the spark timing and air-fuel ratio of a lean-burn natural gas fueled engine has been demonstrated. This has been done by first mapping the thermal efficiency against spark timing and equivalence ratio at a single speed and load combination to obtain the 3-D surface of efficiency versus the other two variables. Then the ability of the control system to find and hold the combination of timing and air-fuel ratio which gives the highest thermal efficiency was explored. The control system described in SAE Paper No. 940546 was used to map the thermal efficiency versus equivalence ratio and ignition timing. NOx, CO, and HC maps were also obtained to determine the tradeoffs between efficiency and emissions. A load corresponding to a brake mean effective pressure of 0.467 MPa was maintained by a water brake dynamometer. A speed of 2000 rpm was maintained by a fuel-controlled governor.
Technical Paper

Real Time Measurement of Volatile and Solid Exhaust Particles Using a Catalytic Stripper

A system has been developed that allows near real time measurements of total, volatile, and nonvolatile particle concentrations in engine exhaust. It consists of a short section of heated catalyst, a cooling coil, and an electrical aerosol analyzer. The performance of this catalytic stripper system has been characterized with nonvolatile (NaCl), volatile sulfate ((NH4)2 SO4), and volatile hydrocarbon (engine oil) particles with diameters ranging from 0.05-0.5 μm. The operating temperature of 300°C gives essentially complete removal of volatile sulfate and hydrocarbon particles, but also leads to removal of 15-25% of solid particles. This system has been used to determine total, volatile, and nonvolatile particle concentrations in the exhaust of a Diesel engine and a spark ignition engine. Volatile volume fractions measured in Diesel exhaust with the catalytic stripper system increased from 19-65% as the equivalence ratio (load) decreased from 0.64-0.13.
Technical Paper

Emissions Characteristics of Soy Methyl Ester Fuels in an IDI Compression Ignition Engine

As part of an ongoing program to control the emissions of diesel-powered equipment used in underground mines, the U. S. Bureau of Mines evaluated exhaust emissions from a compression ignition engine using oxygenated diesel fuels and a diesel oxidation catalyst (DOC). The fuels include neat (100%) soy methyl ester (SME), and a blend of 30% SME (by volume) with 70% petroleum diesel fuel. A Caterpillar 3304 PCNA engine was tested for approximately 50 hours on each fuel. Compared with commercial low-sulfur diesel fuel (D2), neat SME increased volatile organic diesel particulate matter (DPM) but greatly decreased non-volatile DPM, for a net decrease in total DPM. The DOC further reduced volatile and total DPM NOx emissions were slightly reduced for the case of neat SME, but otherwise were not significantly affected. Peak brake power decreased 9% and brake specific fuel consumption increased 13 to 14% for the neat methyl soyate because of its lower energy content compared with D2.
Technical Paper

Exhaust Particulate Emissions from a Direct Injection Spark Ignition Engine

Experiments were performed to measure the average and time-resolved particle number emissions and number-weighted particle size distributions from a gasoline direct injection (GDI) engine. Measurements were made on a late model vehicle equipped with a direct injection spark ignition engine. The vehicle was placed on a chassis dynamometer, which was used to load the engine to road load at five different vehicle speeds ranging from 13 - 90 km/hr. Particle number emissions were measured using a TSI 3020 condensation nucleus counter, and size distributions were measured using a TSI 3934 scanning mobility particle sizer. Average polydisperse number concentration was found to increase from 1.1 × 108 particles/cm3 at 13 km/hr to 2.8 × 108 particles/cm3 at 70 km/hr. Under a closed-loop, stoichiometric homogeneous charge operating mode at 90 km/hr, number emissions fell to 9.3 × 107 particles/cm3 (at all other operating conditions, the engine was in a lean stratified charge operating mode).
Technical Paper

Effects of Variable Piston Trajectory on Indicated Efficiency Using a Quasi-Dimensional Spark-Ignition Model and Genetic Algorithm Optimization

The impact of compression ratio on engine efficiency is well known. A plethora of mechanical concepts have been proposed for altering engine compression ratio in real time. Some of these, like free-piston configurations or complex crank-slider mechanisms have the added ability to alter piston trajectory along with compression ratio. This secondary modality raises the question: Is there a more optimal piston position versus crank-angle profile for spark-ignition (SI) engines than the near-sinusoidal motion produced by a traditional four-bar crank-slider mechanism? Very little published literature directly addresses this question. This work presents the results of a quasi-dimensional SI engine model using piston trajectory as an input. Specific trajectory traits including increased dwell at top dead center and asymmetric compression and expansion strokes were swept. The trajectory also was optimized using a single objective genetic algorithm with 60 individuals and 40 generations.
Technical Paper

Comparison and Optimization of Fourier Transform Infrared Spectroscopy and Gas Chromatography-Mass Spectroscopy for Speciating Unburned Hydrocarbons from Diesel Low Temperature Combustion

Partially premixed low temperature combustion (LTC) in diesel engines is a strategy for reducing soot and NOX formation, though it is accompanied by higher unburned hydrocarbon (UHC) emissions compared to conventional mixing-controlled diesel combustion. In this work, two independent methods of quantifying light UHC species from a diesel engine operating in early LTC (ELTC) modes were compared: Fourier transform infrared (FT-IR) spectroscopy and gas chromatography-mass spectroscopy (GC-MS). A sampling system was designed to capture and transfer exhaust samples for off-line GC-MS analysis, while the FT-IR sampled and quantified engine exhaust in real time. Three different ELTC modes with varying levels of exhaust gas recirculation (EGR) were implemented on a modern light-duty diesel engine. GC-MS and FT-IR concentrations were within 10 % for C2H2, C2H4, C2H6, and C2H4O. While C3H8 was identified and quantified by the FT-IR, it was not detected by the GCMS.
Technical Paper

Comparing Measurements of Carbon in Diesel Exhaust Aerosols Using the Aethalometer, NIOSH Method 5040, and SMPS

Combustion aerosols consist mainly of elemental and organic carbon (EC and OC). Since EC strongly absorbs light and thus affects atmospheric visibility and radiation balance, there is great interest in its measurement. To this end, the National Institute for Occupational Safety and Health (NIOSH) published a standard method to determine the mass of EC and OC on filter samples. Another common method of measuring carbon in aerosols is the aethalometer, which uses light extinction to measure “black carbon” or BC, which is considered to approximate EC. A third method sometimes used for estimating carbon in submicron combustion aerosols, is to measure particle size distributions using a scanning mobility particle sizer (SMPS) and calculate mass using the assumptions that the particles are spherical, carbonaceous and of known density.
Technical Paper

Particle and Gaseous Emission Characteristics of a Formula SAE Race Car Engine

The focus of this work was the physical characterization of exhaust aerosol from the University of Minnesota Formula SAE team's engine. This was done using two competition fuels, 100 octane race fuel and E85. Three engine conditions were evaluated: 6000 RPM 75% throttle, 8000 RPM 50% throttle, and 8000 RPM 100% throttle. Dilute emissions were characterized using a Scanning Mobility Particle Sizer (SMPS) and a Condensation Particle Counter (CPC). E85 fuel produced more power and had lower particulate matter emissions at all test conditions, but more fuel was consumed.
Technical Paper

Nanoparticle Growth During Dilution and Cooling of Diesel Exhaust: Experimental Investigation and Theoretical Assessment

Nanoparticle formation during exhaust sampling and dilution has been examined using a two-stage micro-dilution system to sample the exhaust from a modern, medium-duty diesel engine. Growth rates of nanoparticles at different exhaust dilution ratios and temperatures have been determined by monitoring the evolution of particle size distributions in the first stage of the dilution system. Two methods, graphical and analytical, are described to determine particle growth rate. Extrapolation of size distribution down to 1 nm in diameter has been demonstrated using the graphical method. The average growth rate of nanoparticles is calculated using the analytical method. The growth rate ranges from 6 nm/sec to 24 nm/sec, except at a dilution ratio of 40 and primary dilution temperature of 48 °C where the growth rate drops to 2 nm /sec. This condition seems to represent a threshold for growth. Observed nucleation and growth patterns are consistent with predictions of a simple physical model.
Technical Paper

The Influence of Dilution Conditions on Diesel Exhaust Particle Size Distribution Measurements

Particle size distribution and number concentration measurements have been made in the diluted exhaust of a medium-duty, turbocharged, aftercooled, direct-injection Diesel engine using a unique variable residence time micro-dilution system that allows systematic variation of dilution and sampling conditions, and a scanning mobility particle sizer (SMPS). The measurements show that the number concentrations in the nanoparticle (Dp < 50 nm) and the ultrafine (Dp < 100 nm) ranges are very sensitive to dilution conditions and fuel sulfur content. Changes in concentration of up to two orders of magnitude have been observed when conditions are varied over the range that might be encountered in typical laboratory dilution systems. For example, at a dilution ratio of 12, dilution temperature of 32 °C, and a residence time of 1000 ms, the number concentrations reach 6 × 108 part.
Technical Paper

Exhaust Particle Number and Size Distributions with Conventional and Fischer-Tropsch Diesel Fuels

Diesel exhaust particle number concentrations and size distributions, as well as gaseous and particulate mass emissions, were measured during steady-state tests on a US heavy-duty engine and a European passenger car engine. Two fuels were compared, namely a Fischer-Tropsch diesel fuel manufactured from natural gas, and a US D2 on-highway diesel fuel. With both engines, the Fischer-Tropsch fuel showed a considerable reduction in the number of particles formed by nucleation, when compared with the D2 fuel. At most test modes, particle number emissions were dominated by nucleation mode particles. Consequently, there were generally large reductions (up to 93%) in the total particle number emissions with the Fischer-Tropsch fuel. It is thought that the most probable cause for the reduction in nucleation mode particles is the negligible sulphur content of the Fischer-Tropsch fuel. In general, there were also reductions in all the regulated emissions with the Fischer-Tropsch fuel.
Technical Paper

Characterization of Exhaust Particulate Emissions from a Spark Ignition Engine

Exhaust particulate emissions from a 4-cylinder, 2.25 liter spark ignition engine were measured and characterized. A single-stage ejector-diluter system was used to dilute and cool the exhaust sample for measurement. The particulate measurement equipment included a condensation nucleus counter and a scanning mobility particle sizer. Exhaust measurements were made both upstream and downstream of the catalytic converter using three different fuels. Unlike particulate emissions in diesel engines, spark ignition exhaust particle emissions were found to be highly unstable. Typically, a stable “baseline” concentration on the order of 105 particles/cm3 is emitted. Occasionally, however, a “spike” in the exhaust particle concentration is observed. The exhaust particle concentrations observed during these spikes can increase by as much as two orders of magnitude over the baseline concentration.
Technical Paper

Significance of Fuel Sulfur Content and Dilution Conditions on Particle Emissions from a Heavily-Used Diesel Engine During Transient Operation

The effects of fuel sulfur content and dilution conditions on diesel engine PM number emissions have been researched extensively through steady state testing. Most results show that the concentration of nuclei-mode particles emitted increases with fuel sulfur content. A few studies further observed that fuel sulfur content has little effect on the emissions of heavily-used engines. It has also been found that primary dilution conditions can have a large impact on the size and number distribution of the nuclei-mode particles. These effects, however, have not yet been fully understood through transient testing, the method used by governments worldwide to certify engines and regulate emissions, and a means of experimentation which generates realistic conditions of on-road vehicles by varying the load and speed of the engine.
Journal Article

Emissions Effects of Hydrogen as a Supplemental Fuel with Diesel and Biodiesel

A 1.9 liter Volkswagen TDI engine has been modified to accomodate the addition of hydrogen into the intake manifold via timed port fuel injection. Engine out particulate matter and the emissions of oxides of nitrogen were investigated. Two fuels,low sulfur diesel fuel (BP50) and soy methyl ester (SME) biodiesel (B99), were tested with supplemental hydrogen fueling. Three test conditions were selected to represent a range of engine operating modes. The tests were executed at 20, 40, and 60 % rated load with a constant engine speed o 1700 RPM. At each test condition the percentage of power from hydrogen energy was varied from 0 to 40 %. This corresponds to hydrogen flow rates ranging from 7 to 85 liters per minute. Particulate matter (PM) emissions were measured using a scaning mobility particle sizer (SMPS) and a two stage micro dilution system. Oxides of nitrogen were also monitored.
Journal Article

Late Intake Valve Closing as an Emissions Control Strategy at Tier 2 Bin 5 Engine-Out NOx Level

A fully flexible valve actuation (FFVA) system was developed for a single cylinder research engine to investigate high efficiency clean combustion (HECC) in a diesel engine. The main objectives of the study were to examine the emissions, performance, and combustion characteristics of the engine using late intake valve closing (LIVC) to determine the benefits and limitations of this strategy to meet Tier 2 Bin 5 NOx requirements without after-treatment. The most significant benefit of LIVC is a reduction in particulates due to the longer ignition delay time and a subsequent reduction in local fuel rich combustion zones. More than a 95% reduction in particulates was observed at some operating conditions. Combustion noise was also reduced at low and medium loads due to slower heat release. Although it is difficult to assess the fuel economy benefits of LIVC using a single cylinder engine, LIVC shows the potential to improve the fuel economy through several approaches.
Technical Paper

Off-shoring EMS and the Barrier of Test-in-Reliability

The history of off-road equipment manufacturing has been based on proven designs and long times between model updates. In sharp contrast with this strategy is the electronic manufacturing services (EMS) industry. The EMS industry is driven by the larger consumer product industry's continuing pressure for lower costs. Because of this, EMS tools, processes, and practices have evolved to support rapid technology and component changes. However the increasing consumer demand for features like better user-interfaces, more efficient fuel consumption, and the desire for increased operational controls in equipment have forced the off-road industry to increase the frequency of product updates to meet customers' needs. Equipment manufacturers make running changes leading to a “Learning-by-doing” development and manufacturing process. But rapid changes sometimes have an unpredictable impact on the reliability of the final product.
Technical Paper

Injection Timing and Bowl Configuration Effects on In-Cylinder Particle Mass

The formation of particles in the combustion chamber of a direct injection diesel engine has been studied with the use of the Total Cylinder Sampling Method. With this method, nearly the entire contents of the cylinder of an operating diesel engine can be quickly removed at various times during the combustion process. The particle mass and size distributions present in the sample can then be analyzed. If quenching of the combustion process is quick and complete, the resulting samples are representative of the particle mass and size distributions present in the cylinder near the time sampling begins. This paper discusses the effect of injection timing and piston bowl shape on the particle formation and oxidation. Example size distribution measurements are also shown. The particle concentrations in the cylinder were measured for three different injection timings with the standard piston installed in the engine.