Refine Your Search

Topic

Search Results

Journal Article

A Novel Technique for Investigating the Nature and Origins of Deposits Formed in High Pressure Fuel Injection Equipment

2009-11-02
2009-01-2637
Recent developments in diesel fuel injection equipment coupled with moves to using ULSD and biodiesel blends has seen an increase in the number of reports, from both engine manufacturers and fleet operators, regarding fuel system deposit issues. Preliminary work performed to characterise these deposits showed them to be complicated mixtures, predominantly carbon like but also containing other possible carbon precursor materials. This paper describes the application of the combination of hydropyrolysis, gas chromatography and mass spectrometry to the analysis of these deposits. It also discusses the insights that such analysis can bring to the constitution and origin of these deposits.
Technical Paper

The Effect of Temperature on the Molecular Compositions of External and Internal Gasoline Direct Injection Deposits

2021-09-21
2021-01-1188
The increased severity and prevalence of insoluble deposits formed on fuel injectors in gasoline direct injection (GDI) engines precipitates negative environmental, economic and healthcare impacts. A necessary step in mitigating deposits is to unravel the molecular compositions of these complex layered materials. But very little molecular data has been acquired. Mass spectrometry shows promise but most techniques require the use of solvents, making them unsuited for analyzing insoluble deposits. Here, we apply the high mass-resolving power and in-situ analysis capabilities of 3D OrbitrapTM secondary ion mass spectrometry (3D OrbiSIMS) to characterize deposits formed on the external tip and internal needle from a GDI injector. This is the first application of the technique to study internal GDI deposits. Polycyclic aromatic hydrocarbons (PAHs) are present up to higher maximum masses in the external deposit.
Journal Article

The Effect of Piston Cooling Jets on Diesel Engine Piston Temperatures, Emissions and Fuel Consumption

2012-04-16
2012-01-1212
A Ford 2.4-liter 115PS light-duty diesel engine was modified to allow solenoid control of the oil feed to the piston cooling jets, enabling these to be switched on or off on demand. The influence of the jets on piston temperatures, engine thermal state, gaseous emissions and fuel economy has been investigated. With the jets switched off, piston temperatures were measured to be between 23 and 88°C higher. Across a range of speed-load points, switching off the jets increased engine-out emissions of NOx typically by 3%, and reduced emissions of CO by 5-10%. Changes in HC were of the same order and were reductions at most conditions. Fuel consumption increased at low-speed, high-load conditions and decreased at high-speed, low-load conditions. Applying the results to the NEDC drive cycle suggests active on/off control of the jets could reduce engine-out emissions of CO by 6%, at the expense of a 1% increase in NOx, compared to the case when the jets are on continuously.
Journal Article

A Novel Diagnostics Tool for Measuring Soot Agglomerates Size Distribution in Used Automotive Lubricant Oils

2014-04-01
2014-01-1479
The determination of size distribution of soot particles and agglomerates in oil samples using a Nanosight LM14 to perform Nanoparticle Tracking Analysis (NTA) is described. This is the first application of the technique to sizing soot-in-oil agglomerates and offers the advantages of relatively high rates of sample analysis and low cost compared to Transmission Electron Microscopy (TEM). Lubricating oil samples were drawn from the sump of automotive diesel engines run under a mix of light duty operating conditions. The oil samples were diluted with heptane before analysing. Results from NTA analysis were compared with the outputs of a more conventional analysis based on Dynamic Light Scattering (DLS). This work shows that soot-in-oil exists as agglomerates with average size of 115 nm. This is also in good agreement with TEM analysis carried out in a previous work. NTA can measure soot particles in polydisperse oil solutions and report the size distribution of soot-in-oil aggregates.
Technical Paper

Natural and Environmentally Responsive Building Envelopes

2007-07-09
2007-01-3056
In a context of global warming and our needs to reduce CO2 emissions, building envelopes will play an important role. A new imperative has been put forth to architects and engineers to develop innovative materials, components and systems, in order to make building envelopes adaptive and responsive to variable and extreme climate conditions. Envelopes serve multiple functions, from shielding the interior environment to collecting, storing and generating energy. Perhaps a more recent concern of terrestrial habitats is permeability and leakages within the building envelope. Such air tight and concealed envelopes with zero particle exchange are a necessity and already exist in regard to space capsules and habitats. This paper attempts to acknowledge existing and visionary envelope concepts and their functioning in conjunction with maintaining a favourable interior environment. It introduces several criteria and requirements of advanced façades along with interior pressurization control.
Technical Paper

Constraints on Fuel Injection and EGR Strategies for Diesel PCCI-Type Combustion

2008-04-14
2008-01-1327
An experimental study has been carried out to explore what limits fuel injection and EGR strategies when trying to run a PCCI-type mode of combustion on an engine with current generation hardware. The engine is a turbocharged V6 DI diesel with (1600 bar) HPCR fuel injection equipment and a cooled external EGR system. The variables examined have been the split and timings of fuel injections and the level of EGR; the responses investigated have been ignition delay, heat release, combustion noise, engine-out emissions and brake specific fuel consumption. Although PCCI-type combustion strategies can be effective in reducing NOx and soot emissions, it proved difficult to achieve this without either a high noise or a fuel economy penalty.
Technical Paper

DISI Engine Spark and Fuel Injection Timings. Effects, Compromise and Robustness

2001-09-24
2001-01-3672
DISI engine emissions and fuel economy are strongly dependent upon fuel injection and spark timings, particularly when the engine is operating in stratified charge mode. Experimental studies of the effects of injection and spark timings and the interaction between these are described. The sensitivity of HC and NOx emissions to timings during stratified charge operation, the comparison of performance under stratified and homogeneous charge modes of operation and the rationale for mode switch point settings are investigated. The high sensitivity of emissions to injection and spark timing settings gives rise to potential robustness issues. These are described.
Technical Paper

Characterisation of DISI Emissions and Fuel Economy in Homogeneous and Stratified Charge Modes of Operation

2001-09-24
2001-01-3671
An experimental study of the performance of a reverse tumble, DISI engine is reported. Specific fuel consumption and engine-out emissions have been investigated for both homogeneous and stratified modes of fuel injection. Trends in performance with varying AFR, EGR, spark and injection timings have been explored. It is shown that neural networks can be trained to describe these trends accurately for even the most complex case of stratified charge operation with exhaust gas recirculation.
Technical Paper

An Enhanced Secondary Control Approach for Voltage Restoration in the DC Distribution System

2016-09-20
2016-01-1985
The paper will deal with the problem of establishing a desirable power sharing in multi-feed electric power system for future more-electric aircraft (MEA) platforms. The MEA is one of the major trends in modern aerospace engineering aiming for reduction of the overall aircraft weight, operation cost and environmental impact. Electrical systems are employed to replace existing hydraulic, pneumatic and mechanical loads. Hence the onboard installed electrical power increases significantly and this results in challenges in the design of electrical power systems (EPS). One of the key paradigms for future MEA EPS architectures assumes high-voltage dc distribution with multiple sources, possibly of different physical nature, feeding the same bus(es). In our study we investigate control approaches to guarantee that the total electric load is shared between the sources in a desirable manner. A novel communication channel based secondary control method is proposed in this paper.
Technical Paper

Variation Aware Assembly Systems for Aircraft Wings

2016-09-27
2016-01-2106
Aircraft manufacturers desire to increase production to keep up with anticipated demand. To achieve this, the aerospace industry requires a significant increase in the manufacturing and assembly performance to reach required output levels. This work therefore introduces the Variation Aware Assembly (VAA) concept and identifies its suitability for implementation into aircraft wing assembly processes. The VAA system concept focuses on achieving assemblies towards the nominal dimensions, as opposed to traditional tooling methods that aim to achieve assemblies anywhere within the tolerance band. It enables control of the variation found in Key Characteristics (KC) that will allow for an increase in the assembly quality and product performance. The concept consists of utilizing metrology data from sources both before and during the assembly process, to precisely position parts using motion controllers.
Technical Paper

Evaluating Performance of Uncoated GPF in Real World Driving Using Experimental Results and CFD modelling

2017-09-04
2017-24-0128
Environmental authorities such as EPA, VCA have enforced stringent emissions legislation governing air pollutants released into the atmosphere. Of particular interest is the challenge introduced by the limit on particulate number (PN) counting (#/km) and real driving emissions (RDE) testing; with new emissions legislation being shortly introduced for the gasoline direct injection (GDI) engines, gasoline particulate filters (GPF) are considered the most immediate solution. While engine calibration and testing over the Worldwide harmonized Light vehicles Test Cycle (WLTC) allow for the limits to be met, real driving emission and cold start constitute a real challenge. The present work focuses on an experimental durability study on road under real world driving conditions. Two sets of experiments were carried out. The first study analyzed a gasoline particulate filter (GPF) (2.4 liter, diameter 5.2” round) installed in the underfloor (UF) position and driven up to 200k km.
Technical Paper

Fixturing and Tooling for Wing Assembly with Reconfigurable Datum System Pickup

2011-10-18
2011-01-2556
The aerospace manufacturing sector is continuously seeking automation due to increased demand for the next generation single-isle aircraft. In order to reduce weight and fuel consumption aircraft manufacturers have increasingly started to use more composites as part of the structure. The manufacture and assembly of composites poses different constraints and challenges compared to the more traditional aircraft build consisting of metal components. In order to overcome these problems and to achieve the desired production rate existing manufacturing technologies have to be improved. New technologies and build concepts have to be developed in order to achieve the rate and ramp up of production and cost saving. This paper investigates how to achieve the rib hole key characteristic (KC) in a composite wing box assembly process. When the rib hole KC is out of tolerances, possibly, the KC can be achieved by imposing it by means of adjustable tooling and fixturing elements.
Technical Paper

Predicted Paths of Soot Particles in the Cylinders of a Direct Injection Diesel Engine

2012-04-16
2012-01-0148
Soot formation and distribution inside the cylinder of a light-duty direct injection diesel engine, have been predicted using Kiva-3v CFD software. Pathlines of soot particles traced from specific in-cylinder locations and crank angle instants have been explored using the results for cylinder charge motion predicted by the Kiva-3v code. Pathlines are determined assuming soot particles are massless and follow charge motion. Coagulation and agglomeration have not been taken into account. High rates of soot formation dominate during and just after the injection. Oxidation becomes dominant after the injection has terminated and throughout the power stroke. Computed soot pathlines show that soot particles formed just below the fuel spray axis during the early injection period are more likely to travel to the cylinder wall boundary layer. Soot particles above the fuel spray have lesser tendency to be conveyed to the cylinder wall.
Technical Paper

The Influence of Compression Ratio on Indicated Emissions and Fuel Economy Responses to Input Variables for a D.I Diesel Engine Combustion System

2012-04-16
2012-01-0697
The effect of compression ratio on sensitivity to changes in start of injection and air-fuel ratio has been investigated on a single-cylinder DI diesel engine at fixed low and medium speeds and loads. Compression ratio was set to 17.9:1 or 13.7:1 by using pistons with different bowl sizes. Injection timing and air-to-fuel ratio were swept around a nominal map point at which gross IMEP and NOx values were matched for the two compression ratios. It was found that CO, HC and ISFC were higher at low compression ratio, but the soot/NOx trade-off improved and this could be exploited to reduce the fuel economy penalty. Sensitivity to inputs is generally similar, but high compression ratio tended to have steeper response gradients. Reducing compression ratio to 13.7 gave rise to a marked degradation of performance at light load, producing high CO emissions and a fall in combustion efficiency. This could be eased by reducing rail pressure, but the advantage in smoke emission was lost.
Technical Paper

Morphological Characterisation of Diesel Soot in Oil and the Associated Extraction Dependence

2018-04-03
2018-01-0935
The size and morphology of soot particles and agglomerates extracted from lubricating oil drawn from the sump of a diesel engine have been investigated and compared using Transmission Electron Microscopy (TEM) and Nanoparticle Tracking Analysis (NTA). Samples were prepared for electron microscopy imaging by both centrifugation and solvent extraction to investigate the impact of these procedures on the morphological characteristics, such as skeleton length and width and circularity, of the obtained soot. It was shown that centrifugation increases the extent of agglomeration within the sample, with 15% of the agglomerates above 200 nm compared to only 11% in the solvent extracted soot. It was also observed that the width of centrifugation extracted soot was typically 10 nm to 20 nm larger than that of solvent extracted soot, suggesting that centrifugation forces the individual agglomerate chains together.
Technical Paper

A Development Methodology for Improving the Cold Start Performance of Spark Ignition Engines

1994-02-01
940084
Optimising an engine specification to improve cold start performance has been investigated. Taguchi methods were used to define a test programme to assess the effect of seven build factors. Experiments were conducted to measure mixture ratio at the spark plug location after a short period of engine cranking at test conditions covering ± 15°C and three fuel-mass-supplied values. The analysis of the results identified build modifications which improved start quality and reduced HC and CO emissions substantially compared to a reference, base-line build. Injector design and location, and inlet valve timing were found to have most influence on robustness to uncontrolled variations in mixture preparation during starts.
Technical Paper

Intake Port Fuel Transport and Emissions: The Influence of Injector Type and Fuel Composition

1996-10-01
961996
Experimental studies have been carried out on a spark ignition engine with port fuel injection to examine the influence of injector type and to contrast this with the effects of fuel composition. Intake port fuel transport characteristics and engine-out emissions for fully-warm and warm-up engine operating conditions have been examined as indicators of performance. The investigation has encompassed four types of injector and five gasoline blends. Fuel transport has been characterised using the τ and X parameters. The influence of injector type on these is of similar significance as that of changes in gasoline composition between summer and winter grades. The latter will limit the in-service accuracy of open-loop mixture control during transients. Injector type has a small effect on engine-out emissions under fully-warm operating conditions but has a significant influence on emissions during the early stages of warm-up.
Technical Paper

Factors Influencing Drive Cycle Emissions and Fuel Consumption

1997-05-01
971603
A method of predicting HC, CO and NOx emissions and fuel-used over drive cycles has been developed. This has been applied to FTP-75 and ECE+EUDC drive cycles amended to include cold-start and warm-up. The method requires only fully-warm steady state indicated performance data to be available for the engine. This is used in conjunction with a model of engine thermal behaviour and friction characteristics, and vehicle/drive cycle specifications enabling engine brake load/speed variations to be defined. A time marching prediction of engine-out emissions and fuel consumption is carried out taking into account factors which include high engine friction and poor mixture preparation after cold-start. Comparisons with experimental data indicate that fuel consumption and emissions can be predicted to quantitative accuracy. The method has been applied to compare and contrast the importance of various operating regimes during the two cycles.
Technical Paper

Audit of Fuel Utilisation During the Warm-Up of SI Engines

1997-05-01
971656
Experimental studies of fuel utilisation during the early stages of engine warm-up after cold-starts are reported. The investigation has been carried out on a 1.81, 4 cylinder spark-ignition engine with port electronic fuel injection. The relationship between fuel supplied and fuel accounted for by the analysis of exhaust gas composition shows that a significant mass of fuel supplied is temporarily stored or permanently lost. An interpretation of data is made which allows time-dependent variations of these to be separately resolved and estimates of fuel quantities made. The data covers a range of cold-start conditions down to -5°C at which, on a per cylinder basis, fuel stored peaks typically at around 0.75g and a total of 1g is returned over 100 seconds of engine running. Fuel lost past the piston typically accounts for 2g over 200 to 300 seconds of running.
Technical Paper

The Influence of Gas/Fuel Ratio on Combustion Stability and Misfire Limits of Spark Ignition Engines

2000-03-06
2000-01-1208
The deterioration of combustion stability as lean operating limits and misfire conditions are approached has been investigated experimentally. The study has been carried out on spark ignition engines with port fuel injection and four-valves-per-cylinder. Test conditions cover fully-warm and cold operation, and ranges of air/fuel ratio, exhaust gas recirculation rates and spark timing. An approximate method of calculating gas/fuel ratio is described. This is used to show that combustion stability, characterised by the coefficient of variation of i.m.e.p., is a function of calculated gas/fuel ratio and spark timing until near to the limit of stability. A rapid deterioration in stability and the onset of weak, partial burning occurs at a gas/fuel ratio between 24:1 and 26:1 under fully-warm operating conditions, and around one gas/fuel ratio lower under cold operating conditions.
X