Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

Fuel Effects on Particulate Matter Emissions Variability from a Gasoline Direct Injection Engine

2018-04-03
2018-01-0355
Particulate matter emissions from gasoline direct injection engines are a concern due to the health effects associated with ultrafine particles. This experimental study investigated sources of particulate matter emissions variability observed in previous tests and also examined the effect of ethanol content in gasoline on particle number (PN) concentrations and particle mass (PM) emissions. FTIR measurements of gas phase hydrocarbon emissions provided evidence that changes in fuel composition were responsible for the variability. Exhaust emissions of toluene and ethanol correlated positively with emitted PN concentrations, while emissions of isobutylene correlated negatively. Exhaust emissions of toluene and isobutylene were interpreted as markers of gasoline aromatic content and gasoline volatility respectively.
Technical Paper

Performance and Emissions of a Natural Gas-Fueled 16 Valve DOHC Four-Cylinder Engine

1993-03-01
930380
The increasing use of natural gas as a vehicle fuel has generated considerable research activity to characterize the performance and emissions of engines utilizing this fuel. However, virtually all of the results reported have been for pushrod OHV spark ignition engines or SI conversions of heavy-duty diesel engines. Because of the pressure to improve fuel economy imposed by CAFE requirements, passenger cars are increasingly tending toward high specific output, small displacement engines. These engines employ such features as four valves per cylinder and centrally located spark plugs which give them a different dependence on operating variables than traditional pushrod OHV engines. In this study, experiments were carried out with a two-liter four-cylinder Nissan SR20DE engine representative of modern design practice. The engine was operated on gasoline and natural gas at six different loads and three different speeds. Some tests were also done with isooctane.
Technical Paper

Effect of Increasing Compression Ratio in a Light-Duty Natural Gas-Fueled Engine on Efficiency and Emissions

1993-10-01
932746
As a result of CAFE (corporate average fuel economy) requirements, the trend in passenger car engine design is to smaller displacement engines of higher specific output which provide reductions in vehicle driving cycle fuel consumption without an accompanying decrease in maximum power output. Design features such as four valves per cylinder and compact combustion chambers give these engines significantly different combustion characteristics than traditional pushrod OHV (overhead valve) engines. In general, their combustion chambers are fast burning, enabling the use of higher compression ratios without knock on unleaded gasoline. Since fuel consumption decreases with increasing compression ratio, and since natural gas has a substantially higher octane rating than the best unleaded gasoline, it would appear to be desirable to operate with even higher compression ratios in a dedicated natural gas engine.
Technical Paper

Effect of Closed Loop Fuel Control System Characteristics on Emissions from a Natural Gas-Fueled Engine

1993-10-01
932747
Some current aftermarket natural gas closed loop carburetion systems use an integral control strategy to maintain a fuel-air equivalence ratio centered in the peak conversion window of a three-way catalytic converter. Fuel control system performance under steady-state engine operating conditions can be characterized by the time-averaged value of the fuel-air equivalence ratio, the rich and lean excursion limits, and a skewness parameter that represents the non-symmetry of the time varying fuel-air equivalence ratio about the control value (ϕaverage). Using a representative aftermarket feedback control system, the effect of these parameters on the exhaust emissions of a natural-gas fueled four-cylinder engine has been investigated. In addition, the effect of EGO sensor characteristics on control system performance has been examined.
Technical Paper

Bluff-Body Stabilized Glow Plug Ignition of a Methanol-Fueled IDI Diesel Engine

1993-03-01
930935
Methanol, in common with other alternative fuels including natural gas and LPG, has autoignition characteristics which are poorly suited for use in compression ignition engines. Some sort of ignition assist has proven to be necessary. Considerable work has been carried out with hot surface (glow plug) ignition. The geometric relationship between the fuel injection nozzle and the glow plug is critical to achieving high efficiency and low emissions. Moreover, it is difficult to establish a single geometry which provides reliable ignition and stable operation over the entire range of engine speeds and loads. The work described in this paper investigated extending the range of operation of a particular glow plug/fuel injection nozzle geometry by placing the glow plug in the wake of a bluff body. Bluff-body flame stabilization is a well-known technique in continuous combustors. Experiments were carried out in a single-cylinder CFR cetane rating engine fueled with methanol.
Technical Paper

Effect of Engine Operating Variables and Piston and Ring Parameters on Crevice Hydrocarbon Emissions

1994-03-01
940480
A study was performed to determine the effects of engine operating variables and piston and ring parameters on the crevice hydrocarbon emissions from a spark-ignition engine. Natural gas was used as the test fuel in an effort to isolate crevice mechanisms as the only major source of unburned hydrocarbons in the test engine's exhaust. The largest of the in-cylinder crevices, the piston ring pack crevices, were modified, both in size and accessibility, by altering the piston top land height and the number of piston rings and their end gaps. Each piston and ring configuration was subjected to a series of test sweeps of engine operating variables known to affect exhaust hydrocarbon emissions. None of the physical crevice modifications had any significant effect on the level of the exhaust hydrocarbon emissions, although the cycle-to-cycle repeatability of these emissions, measured with a fast hydrocarbon analyzer, was found to vary between the different configurations.
Technical Paper

Examination of Charge Dilution with EGR to Reduce NOx Emissions from a Natural Gas-Fuelled 16 Valve DOHC Four-Cylinder Engine

1994-10-01
942006
Charge dilution is commonly used to reduce emissions of nitrogen oxides (NOx) from internal combustion engine exhaust gas. The question of whether to use air or exhaust gas recirculation (EGR) as a charge diluent for the natural gas-fuelled test engine is addressed first. The decision to use EGR is based on the potentially lower NOx and unburned hydrocarbon emissions that could be achieved if a three-way catalyst were applied to the engine. The effect of EGR on the spark advance for maximum brake torque (MBT), NOx, and unburned hydrocarbon emissions is then examined in detail. The effect on fuel efficiency is discussed briefly.
Technical Paper

Spark Spectroscopy for Spark Ignition Engine Diagnostics

1995-02-01
950164
The light emissions from a spark discharge were observed by inserting a fibre optic cable through the centre electrode of a spark plug, to investigate the possibility of determining the fuel-air ratio in the spark gap at ignition with spectroscopy. The total broadband light emission from the spark and the light emission centred at 385 nm from the cyanogen radical (chemical formula CN), were observed for varied ϕ and residual gas concentrations. Additionally, the spark breakdown voltage, Vs, was monitored for the experiments. All light emissions were observed to be dependent on Vs, which is influenced by mixture composition, temperature and pressure. With a spark gap size of 0.7 mm, the CN emission shows promise for evaluation of the cyclical variation of ϕ for 0.9 < ϕ <1.1.
Technical Paper

In-Cylinder Measurement of Temperature and Soot Concentration Using the Two-Color Method

1995-02-01
950848
Optical fiber probes were used to measure the soot temperature and estimate the soot concentration inside the cylinder of a DI diesel engine. The probes were mounted at various locations on the head of the test engine, and the measurements were performed under different load levels. Using the two-color method, the variations in temperature and soot mass concentration during the combustion process were examined with temporal and spatial resolution. It was observed that soot formation is rapid and is associated with heterogeneity in the early stage of combustion. Moreover, the soot formation mechanism seems to be independent of the engine load. In contrast, soot oxidation is relatively slow. Data obtained at several different load levels are presented, and the effects of various error sources on the accuracy of the measurement technique are also investigated.
Technical Paper

Behaviour of a Closed Loop Controlled Air Valve Type Mixer on a Natural Gas Fuelled Engine Under Transient Operation

1995-08-01
951911
Many current aftermarket natural gas conversions of gasoline fuelled spark ignited engines use an air-valve type mixer with closed loop control of the gas pressure. This control is often provided by an electronic integral controller that uses the output from an exhaust gas oxygen (EGO) sensor to control the duty cycle of a solenoid valve. By varying the duty cycle of this fuel control valve (FCV), the average pressure in the low pressure regulator (LPR) reference chamber and thus the gas pressure can be varied. The transient behaviour of these fuel systems is affected mainly by the mechanical response of the gas mixer and the LPR. The electronic controller can provide compensation only after the EGO sensor has detected an air-fuel ratio excursion. The main weaknesses of this type of fuel system seems to be associated with the finite response of the mixer and the LPR and by the use of an airflow dependent vacuum signal strength for control.
Technical Paper

Engine Operating Parameter Effects on the Speciated Aldehyde and Ketone Emissions from a Natural Gas Fuelled Engine

1995-10-01
952500
Measurements were taken of the speciated aldehyde and ketone exhaust emissions from a modern four-cylinder engine fuelled with natural gas. The effect on these emissions of varying the engine operating parameters spark timing, exhaust gas recirculation rate, engine speed, and fuel/air equivalence ratio was examined. The influence of these operating parameters on the complete reactivity-weighted emissions with natural gas fuelling is predicted. With stoichiometric fuel/air mixtures, both the total hydrocarbons and formaldehyde emissions declined with increasing exhaust gas temperature and increasing in-cylinder residence time, suggesting that formaldehyde burn-up in the exhaust process largely controls its emissions levels. Closer examination of the aldehyde emissions shows they follow trends more like those of the non-fuel, intermediate hydrocarbon species ethane and acetylene, than like the trends of the fuel components methane and ethane.
Technical Paper

A Phenomenological Model for Soot Formation and Oxidation in Direct-Injection Diesel Engines

1995-10-01
952428
The concentration of carbonaceous particulate matter in the exhaust of diesel engines depends on the rates of formation and oxidation of soot in the combustion chamber. Soot forms early in the combustion process when local fuel-rich areas exist, whereas soot oxidation occurs later when more air is entrained into the fuel spray. Based on this understanding, a phenomenological combustion model is established. In the model, the cylinder volume is divided into four zones: a rich fuel spray core, a premixed-burning/burned gas zone, a mixing controlled burning zone and a lean air zone. Soot formation takes place in the mixing controlled burning zone where the local C/O ratio is above the critical value. Soot oxidation occurs in the premixed-burning/burned gas zone as air is entrained. By using a quasi-global chemical reaction scheme, the oxidation of soot particles by different species can be investigated.
Technical Paper

Validation Tests for a Fast Response Flame Ionisation Detector for In-Cylinder Sampling Near the Spark Plug

1996-05-01
961201
The air/fuel ratio (AFR) is a key contributor to both the performance and emissions of an automotive engine. Its variation between cylinders - and between engine cycles - is of particular importance, especially during throttle transients. This paper explores the use of a fast flame ionisation detector (FFID) to quantify these rapid changes of in-cylinder composition in the vicinity of the spark gap. While this instrument actually measures fuel concentration, its results can be indicative of the AFR behaviour. Others have used the FFID for this purpose, but the planned test conditions placed special demands on the instrument. These made it prudent to explore the limits of its operating envelope and to validate the experimental technique. For in-cylinder sampling, the instrument must always be insensitive to the large pressure changes over the engine cycle. With the wide range of engine loads of interest here, this constraint becomes even more crucial.
Technical Paper

Instantaneous In-Cylinder Hydrocarbon Concentration Measurement during the Post-Flame Period in an SI Engine

1999-10-25
1999-01-3577
Crevices in the combustion chamber are the main source of hydrocarbon (HC) emissions from spark ignition (SI) engines fuelled by natural gas (NG). Instantaneous in-cylinder and engine exhaust port HC concentrations were measured simultaneously using a Cambustion HFR400 fast response flame ionization detector (FRFID) concentrated on the post-flame period. The raw data was reconstructed to account for variation in the FFRID sample transit time and time constant due to fluctuating in-cylinder pressure. HC concentration development during the post-flame period is discussed. Comparison is made of the post-flame in-cylinder and exhaust port HC concentrations under different engine operating conditions, which gives a better understanding of the mechanism by which HC emissions form from crevices in SI engines.
Technical Paper

An Experimental Investigation into the Characteristics of a Fast-Response Flame Ionization Detector for In-Cylinder Sampling

1999-10-25
1999-01-3538
The Cambustion fast-response flame ionization detector (FFID) has been successfully used for instantaneous exhaust port hydrocarbon (HC) concentration measurement in IC engines for a decade. Measurements of in-cylinder HC concentration have also been made, but these present greater challenge. As the sample transit time and the time constant of the system always change when the sampling pressure is changed, it is necessary to investigate the characteristics of the system before it was used for in-cylinder sampling. A unique method was designed to study the influence of the diameter and length of the transfer sample line and the operating parameters of the FFID on the transit time and time constant. A database of transit time and time constant was built up for different simulated in-cylinder pressures. The database can be used for correcting eventual in-cylinder HC concentration measurement.
Technical Paper

Emissions from Compression Ignition Engines with Animal-Fat-Derived Biodiesel Fuels

2014-04-01
2014-01-1600
Biodiesel and other renewable fuels are of interest due to their impact on energy supplies as well as their potential for carbon emissions reductions. Waste animal fats from meat processing facilities, which would otherwise be sent to landfill, have been proposed as a feedstock for biodiesel production. Emissions from biodiesel fuels derived from vegetable oils have undergone intense study, but there remains a lack of data describing the emissions implications of using animal fats as a biodiesel feedstock. In this study, emissions of NOx, unburned hydrocarbons and particulate matter from a compression ignition engine were examined. The particulate matter emissions were characterized using gravimetric analysis, elemental carbon analysis and transmission electron microscopy. The emissions from an animal fat derived B20 blend were compared to those from petroleum diesel and a soy derived B20 blend.
X