Refine Your Search

Topic

Author

Search Results

Journal Article

Selection of Welding Parameter during Friction Stir Spot Welding

2008-04-14
2008-01-0146
The selection of parameters during friction stir spot welding of Al-alloys and Mg-alloys is discussed. The role of tool rotation speed, plunge rate, and dwell time is examined in relation to the tool heating rate,temperature, force, and torque that occur during spot welding. In order to reduce the cycle time and tool force during Al- alloy spot welding, it is necessary to increase the tool rotation speed >1500 RPM. The measured peak temperature in the stir zone is determined by the rotation speed and dwell time, and is ultimately limited by the solidus of the alloy. When tool rotation speeds >1500 RPM are employed during AZ91 Mg-alloy spot welding, the tendency for melted film formation and cracking are greatly increased.
Technical Paper

Microcellular Ceramic Foams: Manufacturing and Study of Acoustical Properties

2007-05-15
2007-01-2187
A novel processing method for fabricating high porosity microcellular ceramic foams for sound absorption applications has been developed. The strategy for fabricating the ceramic foams involves: (i) forming some shapes using a mixture of preceramic polymer and expandable microspheres by a conventional ceramic forming method, (ii) foaming the compact by heating, (iii) cross-linking the foamed body, and (iv) transforming the foamed body into ceramic foams by pyrolysis. By controlling the microsphere content and that of the base elastomer, it was possible to adjust the porosity with a very high open-cell content (ranging between 43 - 95%), high microcellular cell densities (9 × 108 - 1.6 × 109 cells/cm3) and desired expansion ratios (3 - 6 folds). Sound absorption testing has been performed using ASTM C-384 standard test. The preliminary results show that ceramic foams are candidate sound absorption materials.
Technical Paper

Foaming Visualization of Thermoplastic Polyolefin (TPO) Blends with N2

2007-04-16
2007-01-0572
Polymers are often blended to create compounds with new or enhanced properties in order to compensate for an individual polymer's weakness or lack of inherent properties. In the field of polymer foaming, polymer blends are also used to generate fine-cell structures via heterogeneous nucleation. Recently, an interest in physical blowing agents, such CO2 and N2, has increased because of their low impact on the environment. It has thus become additionally important to pursue research on the foaming of polymer blends employing these particular physical blowing agents in an effort to keep up with the demand for environmentally friendly products. In this study, thermoplastic polyolefin (TPO) blends were prepared with polypropylene (PP) and a metallocene-based polyolefin elastomer (POE) using twin-screw extruders and a batch mixer.
Technical Paper

Poly (butyl acrylate)-Modified Cellulose Fibres for Toughening WPC

2007-04-16
2007-01-0574
One of the key challenges of the wood polymer composites (WPC) is the inadequate toughness partly due to the incompatibility of the natural fibres and PP matrix. In this work, we performed the surface modification of the natural fibre by either in-situ grafting polymerization of butyl acrylate (PBA) or adsorbing matrix-compatible cationic PBA latex on the fibre surfaces. The results indicated that the mechanical properties of the polypropylene (PP) composites containing the modified fibres, unnotched Izod impact strength in particular, have been improved significantly. The influencing factors and the mechanism of toughening process have also been preliminarily investigated.
Technical Paper

Eutectic Segregation and Cracking in AZ91 Friction Stir Spot Welds

2007-04-16
2007-01-1700
Friction stir spot welding of Mg-alloy AZ91 is investigated. The temperature cycles within the stir zone and in the TMAZ region are examined using thermocouples, which are located within the tool itself and also by locating thermocouples in drilled holes at specific locations relative to the bottom of the tool shoulder and the periphery of the rotating pin. The measured temperatures in the stir zone range from 437°C to 460°C (0.98Ts, where Ts is the solidus temperature in degrees Kelvin) in AZ91 spot welds produced using plunge rates from 2.5 and 25 mm/s. The thermal cycle within the stir zone formed during AZ91 spot welding could not be measured by locating thermocouples within the workpiece in drilled holes adjacent to the periphery of the rotating pin.
Technical Paper

Injection Molded Hybrid Natural Fibre - Thermoplastic Composites for Automotive Interior Parts

2004-03-08
2004-01-0014
Eco-efficient and cost effective natural fibre - thermoplastic composites have gained attention to a great extent in the automotive industry. Most of the OEM specifications for automotive interior parts, for example, instrument panels, recommend the composite should have a minimum flexural modulus of 1900 MPa, a notched Impact strength greater than 150 J/m at room temperature and a melt flow index of 5 g/10min and above [1, 2 and 3]. The objective of this work was to develop a high performance hybrid composite by injection molding process of the composites made from natural fibre in combination with glass fibre or calcium carbonate in a thermoplastic matrix to meet the specifications required for automotive interior parts applications. Mechanical properties, such as tensile and flexural strengths and moduli of the composites prepared, were found to be highly promising.
Technical Paper

The Effect of Surface Modification on the Mechanical Properties of Hemp Fiber/Polyester Composites

2004-03-08
2004-01-0728
In this work hemp fibers were chemically treated in order to improve the fiber/matrix interaction in hemp fiber/unsaturated polyester composites prepared by a Resin Transfer Molding (RTM) process. Chemicals used for paper sizing (AKD, ASA, Rosin Acid and SMA) as well as a silane compound and sodium hydroxide were used to modify the fibers' surface. The tensile, flexural and impact properties of the resulting materials were measured. A slight improvement in mechanical properties was observed for the SMA, silane and alkali treated specimens. However close analysis of these tests and of the fracture surface of the samples showed that there was no amelioration of the fiber/matrix adhesion. It was found that predicted tensile strengths using the rule of mixture were very close to the experimental values obtained in this work. Finally the properties of an hybrid glass fiber/hemp fiber composite were found to be very promising
Technical Paper

High Performance Natural Fiber Thermoplastics for Automotive Interior Parts

2004-03-08
2004-01-0729
Natural fiber mat (NMT) composites are ecologically and energetically beneficial because of their light-weight at high fibre content. This study demonstrated that the use of loose natural fibre in NMT process could lead to tremendous improvement in the shock absorption properties. It is also concluded that in NMT process fibre length above the critical length of fibre hardly affects the mechanical strength. The process is relatively easy one-step molding technique to provide large dimensions. The process also demonstrated promise in reducing the cost of the composite parts by minimizing/eliminating the use of natural fibre nonwoven mat and replacement of glass fibre.
Technical Paper

Improving Flow Uniformity in a Diesel Particulate Filter System

2001-05-07
2001-01-1944
In this study, a simulation-based flow optimization of the diesel particulate filter (DPF) system is performed. The geometry and the swirl component of the inlet flow is optimized to improve flow uniformity upstream of the filter and to decrease overall pressure drop. The flow through the system is simulated with Fluent computational fluid dynamics (CFD) software from Fluent Inc. The wall-flow filter is modeled with an equivalent porous material. This study only investigates the clean flow. The DPF system is composed of three parts: the inlet diffuser, the filter and the outlet nozzle. In the original system a linear cone joins the inlet and outlet pipes to the cylindrical filter. Due to the large opening angle of this cone, flow separates and creates a recirculation zone between the inlet and the filter. The flow pattern reveals that a large area of the filter is not used: More than 88% of the air flow passes through less that 53% of the area.
Technical Paper

Concurrent Quantitative Laser-Induced Incandescence and SMPS Measurements of EGR Effects on Particulate Emissions from a TDI Diesel Engine

2002-10-21
2002-01-2715
A comparison of scanning mobility particle sizer (SMPS) and laser-induced incandescence (LII) measurements of diesel particulate matter (PM) was performed. The results reveal the significance of the aggregate nature of diesel PM on interpretation of size and volume fraction measurements obtained with an SMPS, and the accuracy of primary particle size measurements by LII. Volume fraction calculations based on the mobility diameter measured by the SMPS substantially over-predict the space-filling volume fraction of the PM. Correction algorithms for the SMPS measurements, to account for the fractal nature of the aggregate morphology, result in a substantial reduction in the reported volume. The behavior of the particulate volume fraction, mean and standard deviation of the mobility diameter, and primary particle size are studied as a function of the EGR for a range of steady-state engine speeds and loads for a turbocharged direct-injection diesel engine.
Technical Paper

Real-Time Measurement of Flow Quality in CCOT Systems

2002-03-04
2002-01-0508
Systematic design of mobile air-conditioning system components in R134a systems has been hampered by inaccurate knowledge of the flow quality, especially the amount of liquid returned to the compressor. The thermodynamic quality is typically used, but it is somewhat unreliable due to the large percentage of miscible compressor oil circulating with the refrigerant. A technique for measuring the flow quality in the refrigeration loop based on phase segregation and recombination has been developed and verified. The refrigerant quality has been deduced with the aid of standard sampling methods for measuring the percentage of oil in circulation. Hence, the relative contributions of all three components of the flow have been measured. The method is suitable for relative evaluation of component performance on a test stand. The method has been applied to measuring evaporator discharge quality at standard conditions and to quantifying accumulator liquid carryover.
Technical Paper

A Chemical-Kinetic Approach to the Definition of the Laminar Flame Speed for the Simulation of the Combustion of Spark-Ignition Engines

2017-09-04
2017-24-0035
The laminar burning speed is an important intrinsic property of an air-fuel mixture determining key combustion characteristics such as turbulent flame propagation. It is a function of the mixture composition (mixture fraction and residual gas mass fraction) and of the thermodynamic conditions. Experimental measurements of Laminar Flame Speeds (LFS) are common in literature, but initial pressure and temperature are limited to low values due to the test conditions: typical pressure values for LFS detection are lower than 25 bar, and temperature rarely exceeds 550 K. Actual trends in spark ignition engines are to increase specific power output by downsizing and supercharging, thus the flame front involves even more higher pressure and temperature since the beginning of combustion.
Technical Paper

Impact of Powertrain Type on Potential Life Cycle Greenhouse Gas Emission Reductions from a Real World Lightweight Glider

2017-03-28
2017-01-1274
This study investigates the life cycle greenhouse gas (GHG) emissions of a set of vehicles using two real-world gliders (vehicles without powertrains or batteries); a steel-intensive 2013 Ford Fusion glider and a multi material lightweight vehicle (MMLV) glider that utilizes significantly more aluminum and carbon fiber. These gliders are used to develop lightweight and conventional models of internal combustion engine vehicles (ICV), hybrid electric vehicles (HEV), and battery electric vehicles (BEV). Our results show that the MMLV glider can reduce life cycle GHG emissions despite its use of lightweight materials, which can be carbon intensive to produce, because the glider enables a decrease in fuel (production and use) cycle emissions. However, the fuel savings, and thus life cycle GHG emission reductions, differ substantially depending on powertrain type. Compared to ICVs, the high efficiency of HEVs decreases the potential fuel savings.
Technical Paper

Modelling and Optimization of Plug Flow Mufflers in Emission Control Systems

2017-06-05
2017-01-1782
Large-scale emergency or off-grid power generation is typically achieved through diesel or natural gas generators. To meet governmental emission requirements, emission control systems (ECS) are required. In operation, effective control over the generator’s acoustic emission is also necessary, and can be accomplished within the ECS system. Plug flow mufflers are commonly used, as they provide a sufficient level of noise attenuation in a compact structure. The key design parameter is the transmission loss of the muffler, as this dictates the level of attenuation at a given frequency. This work implements an analytically decoupled solution, using multiple perforate impedance models, through the transfer matrix method (TMM) to predict the transmission loss based on the muffler geometry. An equivalent finite element model is implemented for numerical simulation. The analytical results and numerical results are then evaluated against experimental data from literature.
Technical Paper

Development and Calibration of One Dimensional Engine Model for Hardware-In-The-Loop Applications

2018-04-03
2018-01-0874
The present paper aims at developing an innovative procedure to create a one-dimensional (1D) real-time capable simulation model for a heavy-duty diesel engine. The novelty of this approach is the use of the top-level engine configuration, test cell measurement data, and manufacturer maps as opposite to common practice of utilizing a detailed 1D engine model. The objective is to facilitate effective model adjustments and hence further increase the application of Hardware-in-the-Loop (HiL) simulations in powertrain development. This work describes the development of Fast Running Model (FRM) in GT-SUITE simulation software. The cylinder and gas-path modeling and calibration are described in detail. The results for engine performance and exhaust emissions produced satisfactory agreement with both steady-state and transient experimental data.
Technical Paper

Heavy Duty Diesel Engine Modeling with Layered Artificial Neural Network Structures

2018-04-03
2018-01-0870
In order to meet emissions and power requirements, modern engine design has evolved in complexity and control. The cost and time restraints of calibration and testing of various control strategies have made virtual testing environments increasingly popular. Using Hardware-in-the-Loop (HiL), Volvo Penta has built a virtual test rig named VIRTEC for efficient engine testing, using a model simulating a fully instrumented engine. This paper presents an innovative Artificial Neural Network (ANN) based model for engine simulations in HiL environment. The engine model, herein called Artificial Neural Network Engine (ANN-E), was built for D8-600 hp Volvo Penta engine, and directly implemented in the VIRTEC system. ANN-E uses a combination of feedforward and recursive ANNs, processing 7 actuator signals from the engine management system (EMS) to provide 30 output signals.
Technical Paper

The Influence of the Bauschinger Effect on Springback Prediction for Dual Phase Steel

2006-04-03
2006-01-0145
Springback is one of the main concerns in sheet metal forming with the increased use of advanced high strength steels, among which dual phase steels are gaining popularity. Although finite element analysis (FEA) has been successfully used in simulating complicated forming processes, it is difficult to accurately predict springback due to certain complex material behaviors such as the non-linear recovery behavior. In this study, the tension-unloading-reloading (TUR) test and XRD analysis have been employed to investigate non-linear recovery through Bauschinger Effect (BE) measurement at different pre-strain levels. The results demonstrated that dual phase steels exhibited the strong BE. The FEA simulation of springback prediction in the deep-draw bending test showed that the simulation accuracy was significantly improved by incorporating the Bauschinger effect.
Technical Paper

Foamability of Thermoplastic Vulcanizates (TPVs) with Various Physical Blowing Agents (PBAs)

2006-04-03
2006-01-0972
Thermoplastic Vulcanizate (TPV) is a special class of Thermoplastic Elastomers (TPEs) made of a rubber/plastic polymer mixture in which the rubber phase is highly vulcanized. It is prepared by melt mixing a thermoplastic with an elastomer and by in-situ crosslinking of the rubber phase. Currently, TPV is replacing EPDM rubber dramatically because of the impressive advantages for automotive sealing applications. Some of the advantages of TPV compared to that of EPDM rubber are good gloss, recyclability, improved colorability, shorter cycle time and design flexibility. The development of TPV foaming technology is to fulfill the requirement of achieving lower cost, lighter weight and better fuel economy. Foaming of TPV has not been investigated extensively.
Technical Paper

Energy Generation and Stir Zone Dimensions in Friction Stir Spot Welds

2006-04-03
2006-01-0971
Energy generation and utilization during friction stir spot welding of Al 6061-T6 and AM50 sheet materials are investigated. The dimensions of the stir zones during plunge testing are largely unchanged when the tool rotational speed increases from 1500 RPM to 3000 RPM (for a plunge rate of 1 mm/s) and when the rate of tool penetration increases from 1 mm/s to 10 mm/s (for a tool rotational speed of 3000 RPM). The energy resulting from tool rotation is also unaffected when higher tool rotational speeds are applied. The rotating pin accounts for around 70% and 66% of the energy generated when 6.3 mm thick Al 6061-T6 and AM50 sheet materials are spot welded without the application of a dwell period. In direct contrast, the contribution made by the tool shoulder increases to around 48% (Al 6061-T6) and to 65% (AM50) when a four second long dwell period is incorporated during spot welding of 6.3 mm thick sheets.
Technical Paper

Cell Nucleation and Growth Study of PP Foaming with CO2 in a Batch-Simulation System

2006-04-03
2006-01-0507
TPO is being used to make automotive parts for its number of advantages: i) low temperature flexibility and ductility, ii) excellent impact/stiffness/flow balance, iii) excellent weatherability, and iv) free-flowing pellet form for easy processing, storage, and handling. However, by foaming TPO, due to its higher rigidity-to-weigh ratio, it would offer additional advantages over the solid counterparts in terms of reduced weight, reduced material cost, and decreased fuel usage without compromising their performance. Since a major component in TPO is polypropylene (PP), understanding PP foaming behaviours is an important step towards understanding TPO foaming. For foam materials, cell density and cell size are two significant parameters that affect their material properties. In this research, we observed the cell nucleation and initial growth behaviours of PP foams blown with CO2 under various experimental conditions in a batch foaming simulation system.
X