Refine Your Search

Topic

Search Results

Technical Paper

Injection Molded Hybrid Natural Fibre - Thermoplastic Composites for Automotive Interior Parts

2004-03-08
2004-01-0014
Eco-efficient and cost effective natural fibre - thermoplastic composites have gained attention to a great extent in the automotive industry. Most of the OEM specifications for automotive interior parts, for example, instrument panels, recommend the composite should have a minimum flexural modulus of 1900 MPa, a notched Impact strength greater than 150 J/m at room temperature and a melt flow index of 5 g/10min and above [1, 2 and 3]. The objective of this work was to develop a high performance hybrid composite by injection molding process of the composites made from natural fibre in combination with glass fibre or calcium carbonate in a thermoplastic matrix to meet the specifications required for automotive interior parts applications. Mechanical properties, such as tensile and flexural strengths and moduli of the composites prepared, were found to be highly promising.
Technical Paper

Improving Flow Uniformity in a Diesel Particulate Filter System

2001-05-07
2001-01-1944
In this study, a simulation-based flow optimization of the diesel particulate filter (DPF) system is performed. The geometry and the swirl component of the inlet flow is optimized to improve flow uniformity upstream of the filter and to decrease overall pressure drop. The flow through the system is simulated with Fluent computational fluid dynamics (CFD) software from Fluent Inc. The wall-flow filter is modeled with an equivalent porous material. This study only investigates the clean flow. The DPF system is composed of three parts: the inlet diffuser, the filter and the outlet nozzle. In the original system a linear cone joins the inlet and outlet pipes to the cylindrical filter. Due to the large opening angle of this cone, flow separates and creates a recirculation zone between the inlet and the filter. The flow pattern reveals that a large area of the filter is not used: More than 88% of the air flow passes through less that 53% of the area.
Technical Paper

Concurrent Quantitative Laser-Induced Incandescence and SMPS Measurements of EGR Effects on Particulate Emissions from a TDI Diesel Engine

2002-10-21
2002-01-2715
A comparison of scanning mobility particle sizer (SMPS) and laser-induced incandescence (LII) measurements of diesel particulate matter (PM) was performed. The results reveal the significance of the aggregate nature of diesel PM on interpretation of size and volume fraction measurements obtained with an SMPS, and the accuracy of primary particle size measurements by LII. Volume fraction calculations based on the mobility diameter measured by the SMPS substantially over-predict the space-filling volume fraction of the PM. Correction algorithms for the SMPS measurements, to account for the fractal nature of the aggregate morphology, result in a substantial reduction in the reported volume. The behavior of the particulate volume fraction, mean and standard deviation of the mobility diameter, and primary particle size are studied as a function of the EGR for a range of steady-state engine speeds and loads for a turbocharged direct-injection diesel engine.
Technical Paper

A Chemical-Kinetic Approach to the Definition of the Laminar Flame Speed for the Simulation of the Combustion of Spark-Ignition Engines

2017-09-04
2017-24-0035
The laminar burning speed is an important intrinsic property of an air-fuel mixture determining key combustion characteristics such as turbulent flame propagation. It is a function of the mixture composition (mixture fraction and residual gas mass fraction) and of the thermodynamic conditions. Experimental measurements of Laminar Flame Speeds (LFS) are common in literature, but initial pressure and temperature are limited to low values due to the test conditions: typical pressure values for LFS detection are lower than 25 bar, and temperature rarely exceeds 550 K. Actual trends in spark ignition engines are to increase specific power output by downsizing and supercharging, thus the flame front involves even more higher pressure and temperature since the beginning of combustion.
Technical Paper

Impact of Powertrain Type on Potential Life Cycle Greenhouse Gas Emission Reductions from a Real World Lightweight Glider

2017-03-28
2017-01-1274
This study investigates the life cycle greenhouse gas (GHG) emissions of a set of vehicles using two real-world gliders (vehicles without powertrains or batteries); a steel-intensive 2013 Ford Fusion glider and a multi material lightweight vehicle (MMLV) glider that utilizes significantly more aluminum and carbon fiber. These gliders are used to develop lightweight and conventional models of internal combustion engine vehicles (ICV), hybrid electric vehicles (HEV), and battery electric vehicles (BEV). Our results show that the MMLV glider can reduce life cycle GHG emissions despite its use of lightweight materials, which can be carbon intensive to produce, because the glider enables a decrease in fuel (production and use) cycle emissions. However, the fuel savings, and thus life cycle GHG emission reductions, differ substantially depending on powertrain type. Compared to ICVs, the high efficiency of HEVs decreases the potential fuel savings.
Technical Paper

Modelling and Optimization of Plug Flow Mufflers in Emission Control Systems

2017-06-05
2017-01-1782
Large-scale emergency or off-grid power generation is typically achieved through diesel or natural gas generators. To meet governmental emission requirements, emission control systems (ECS) are required. In operation, effective control over the generator’s acoustic emission is also necessary, and can be accomplished within the ECS system. Plug flow mufflers are commonly used, as they provide a sufficient level of noise attenuation in a compact structure. The key design parameter is the transmission loss of the muffler, as this dictates the level of attenuation at a given frequency. This work implements an analytically decoupled solution, using multiple perforate impedance models, through the transfer matrix method (TMM) to predict the transmission loss based on the muffler geometry. An equivalent finite element model is implemented for numerical simulation. The analytical results and numerical results are then evaluated against experimental data from literature.
Technical Paper

Development and Calibration of One Dimensional Engine Model for Hardware-In-The-Loop Applications

2018-04-03
2018-01-0874
The present paper aims at developing an innovative procedure to create a one-dimensional (1D) real-time capable simulation model for a heavy-duty diesel engine. The novelty of this approach is the use of the top-level engine configuration, test cell measurement data, and manufacturer maps as opposite to common practice of utilizing a detailed 1D engine model. The objective is to facilitate effective model adjustments and hence further increase the application of Hardware-in-the-Loop (HiL) simulations in powertrain development. This work describes the development of Fast Running Model (FRM) in GT-SUITE simulation software. The cylinder and gas-path modeling and calibration are described in detail. The results for engine performance and exhaust emissions produced satisfactory agreement with both steady-state and transient experimental data.
Technical Paper

Heavy Duty Diesel Engine Modeling with Layered Artificial Neural Network Structures

2018-04-03
2018-01-0870
In order to meet emissions and power requirements, modern engine design has evolved in complexity and control. The cost and time restraints of calibration and testing of various control strategies have made virtual testing environments increasingly popular. Using Hardware-in-the-Loop (HiL), Volvo Penta has built a virtual test rig named VIRTEC for efficient engine testing, using a model simulating a fully instrumented engine. This paper presents an innovative Artificial Neural Network (ANN) based model for engine simulations in HiL environment. The engine model, herein called Artificial Neural Network Engine (ANN-E), was built for D8-600 hp Volvo Penta engine, and directly implemented in the VIRTEC system. ANN-E uses a combination of feedforward and recursive ANNs, processing 7 actuator signals from the engine management system (EMS) to provide 30 output signals.
Technical Paper

Cell Nucleation and Growth Study of PP Foaming with CO2 in a Batch-Simulation System

2006-04-03
2006-01-0507
TPO is being used to make automotive parts for its number of advantages: i) low temperature flexibility and ductility, ii) excellent impact/stiffness/flow balance, iii) excellent weatherability, and iv) free-flowing pellet form for easy processing, storage, and handling. However, by foaming TPO, due to its higher rigidity-to-weigh ratio, it would offer additional advantages over the solid counterparts in terms of reduced weight, reduced material cost, and decreased fuel usage without compromising their performance. Since a major component in TPO is polypropylene (PP), understanding PP foaming behaviours is an important step towards understanding TPO foaming. For foam materials, cell density and cell size are two significant parameters that affect their material properties. In this research, we observed the cell nucleation and initial growth behaviours of PP foams blown with CO2 under various experimental conditions in a batch foaming simulation system.
Technical Paper

Fuel Effects on Particulate Matter Emissions Variability from a Gasoline Direct Injection Engine

2018-04-03
2018-01-0355
Particulate matter emissions from gasoline direct injection engines are a concern due to the health effects associated with ultrafine particles. This experimental study investigated sources of particulate matter emissions variability observed in previous tests and also examined the effect of ethanol content in gasoline on particle number (PN) concentrations and particle mass (PM) emissions. FTIR measurements of gas phase hydrocarbon emissions provided evidence that changes in fuel composition were responsible for the variability. Exhaust emissions of toluene and ethanol correlated positively with emitted PN concentrations, while emissions of isobutylene correlated negatively. Exhaust emissions of toluene and isobutylene were interpreted as markers of gasoline aromatic content and gasoline volatility respectively.
Technical Paper

Performance and Emissions of a Natural Gas-Fueled 16 Valve DOHC Four-Cylinder Engine

1993-03-01
930380
The increasing use of natural gas as a vehicle fuel has generated considerable research activity to characterize the performance and emissions of engines utilizing this fuel. However, virtually all of the results reported have been for pushrod OHV spark ignition engines or SI conversions of heavy-duty diesel engines. Because of the pressure to improve fuel economy imposed by CAFE requirements, passenger cars are increasingly tending toward high specific output, small displacement engines. These engines employ such features as four valves per cylinder and centrally located spark plugs which give them a different dependence on operating variables than traditional pushrod OHV engines. In this study, experiments were carried out with a two-liter four-cylinder Nissan SR20DE engine representative of modern design practice. The engine was operated on gasoline and natural gas at six different loads and three different speeds. Some tests were also done with isooctane.
Technical Paper

Effect of Increasing Compression Ratio in a Light-Duty Natural Gas-Fueled Engine on Efficiency and Emissions

1993-10-01
932746
As a result of CAFE (corporate average fuel economy) requirements, the trend in passenger car engine design is to smaller displacement engines of higher specific output which provide reductions in vehicle driving cycle fuel consumption without an accompanying decrease in maximum power output. Design features such as four valves per cylinder and compact combustion chambers give these engines significantly different combustion characteristics than traditional pushrod OHV (overhead valve) engines. In general, their combustion chambers are fast burning, enabling the use of higher compression ratios without knock on unleaded gasoline. Since fuel consumption decreases with increasing compression ratio, and since natural gas has a substantially higher octane rating than the best unleaded gasoline, it would appear to be desirable to operate with even higher compression ratios in a dedicated natural gas engine.
Technical Paper

Effect of Closed Loop Fuel Control System Characteristics on Emissions from a Natural Gas-Fueled Engine

1993-10-01
932747
Some current aftermarket natural gas closed loop carburetion systems use an integral control strategy to maintain a fuel-air equivalence ratio centered in the peak conversion window of a three-way catalytic converter. Fuel control system performance under steady-state engine operating conditions can be characterized by the time-averaged value of the fuel-air equivalence ratio, the rich and lean excursion limits, and a skewness parameter that represents the non-symmetry of the time varying fuel-air equivalence ratio about the control value (ϕaverage). Using a representative aftermarket feedback control system, the effect of these parameters on the exhaust emissions of a natural-gas fueled four-cylinder engine has been investigated. In addition, the effect of EGO sensor characteristics on control system performance has been examined.
Technical Paper

Bluff-Body Stabilized Glow Plug Ignition of a Methanol-Fueled IDI Diesel Engine

1993-03-01
930935
Methanol, in common with other alternative fuels including natural gas and LPG, has autoignition characteristics which are poorly suited for use in compression ignition engines. Some sort of ignition assist has proven to be necessary. Considerable work has been carried out with hot surface (glow plug) ignition. The geometric relationship between the fuel injection nozzle and the glow plug is critical to achieving high efficiency and low emissions. Moreover, it is difficult to establish a single geometry which provides reliable ignition and stable operation over the entire range of engine speeds and loads. The work described in this paper investigated extending the range of operation of a particular glow plug/fuel injection nozzle geometry by placing the glow plug in the wake of a bluff body. Bluff-body flame stabilization is a well-known technique in continuous combustors. Experiments were carried out in a single-cylinder CFR cetane rating engine fueled with methanol.
Technical Paper

Effect of Engine Operating Variables and Piston and Ring Parameters on Crevice Hydrocarbon Emissions

1994-03-01
940480
A study was performed to determine the effects of engine operating variables and piston and ring parameters on the crevice hydrocarbon emissions from a spark-ignition engine. Natural gas was used as the test fuel in an effort to isolate crevice mechanisms as the only major source of unburned hydrocarbons in the test engine's exhaust. The largest of the in-cylinder crevices, the piston ring pack crevices, were modified, both in size and accessibility, by altering the piston top land height and the number of piston rings and their end gaps. Each piston and ring configuration was subjected to a series of test sweeps of engine operating variables known to affect exhaust hydrocarbon emissions. None of the physical crevice modifications had any significant effect on the level of the exhaust hydrocarbon emissions, although the cycle-to-cycle repeatability of these emissions, measured with a fast hydrocarbon analyzer, was found to vary between the different configurations.
Technical Paper

Operating Parameter Effects on the Speciated Hydrocarbon Emissions from a Natural Gas Fueled Engine

1994-10-01
942007
The effects of engine operating parameters on the speciated engine-out hydrocarbon emissions from a natural gas fueled spark ignition 16 valve four-cylinder engine were examined. Total hydrocarbon emissions were dominated by methane, the main component of natural gas. The non-methane hydrocarbons consisted primarily of ethane, ethene, and acetylene. Except for changes in the fuel-air equivalence ratio rich of the stoichiometric condition, emissions of unsaturated species were found to be less sensitive to engine operating parameters than were the fuel components. A single species, ethene, dominated the engine-out hydrocarbon reactivity, accounting for over 80% of the NMHC reactivity.
Technical Paper

Examination of Charge Dilution with EGR to Reduce NOx Emissions from a Natural Gas-Fuelled 16 Valve DOHC Four-Cylinder Engine

1994-10-01
942006
Charge dilution is commonly used to reduce emissions of nitrogen oxides (NOx) from internal combustion engine exhaust gas. The question of whether to use air or exhaust gas recirculation (EGR) as a charge diluent for the natural gas-fuelled test engine is addressed first. The decision to use EGR is based on the potentially lower NOx and unburned hydrocarbon emissions that could be achieved if a three-way catalyst were applied to the engine. The effect of EGR on the spark advance for maximum brake torque (MBT), NOx, and unburned hydrocarbon emissions is then examined in detail. The effect on fuel efficiency is discussed briefly.
Technical Paper

Spark Spectroscopy for Spark Ignition Engine Diagnostics

1995-02-01
950164
The light emissions from a spark discharge were observed by inserting a fibre optic cable through the centre electrode of a spark plug, to investigate the possibility of determining the fuel-air ratio in the spark gap at ignition with spectroscopy. The total broadband light emission from the spark and the light emission centred at 385 nm from the cyanogen radical (chemical formula CN), were observed for varied ϕ and residual gas concentrations. Additionally, the spark breakdown voltage, Vs, was monitored for the experiments. All light emissions were observed to be dependent on Vs, which is influenced by mixture composition, temperature and pressure. With a spark gap size of 0.7 mm, the CN emission shows promise for evaluation of the cyclical variation of ϕ for 0.9 < ϕ <1.1.
Technical Paper

In-Cylinder Measurement of Temperature and Soot Concentration Using the Two-Color Method

1995-02-01
950848
Optical fiber probes were used to measure the soot temperature and estimate the soot concentration inside the cylinder of a DI diesel engine. The probes were mounted at various locations on the head of the test engine, and the measurements were performed under different load levels. Using the two-color method, the variations in temperature and soot mass concentration during the combustion process were examined with temporal and spatial resolution. It was observed that soot formation is rapid and is associated with heterogeneity in the early stage of combustion. Moreover, the soot formation mechanism seems to be independent of the engine load. In contrast, soot oxidation is relatively slow. Data obtained at several different load levels are presented, and the effects of various error sources on the accuracy of the measurement technique are also investigated.
Technical Paper

Behaviour of a Closed Loop Controlled Air Valve Type Mixer on a Natural Gas Fuelled Engine Under Transient Operation

1995-08-01
951911
Many current aftermarket natural gas conversions of gasoline fuelled spark ignited engines use an air-valve type mixer with closed loop control of the gas pressure. This control is often provided by an electronic integral controller that uses the output from an exhaust gas oxygen (EGO) sensor to control the duty cycle of a solenoid valve. By varying the duty cycle of this fuel control valve (FCV), the average pressure in the low pressure regulator (LPR) reference chamber and thus the gas pressure can be varied. The transient behaviour of these fuel systems is affected mainly by the mechanical response of the gas mixer and the LPR. The electronic controller can provide compensation only after the EGO sensor has detected an air-fuel ratio excursion. The main weaknesses of this type of fuel system seems to be associated with the finite response of the mixer and the LPR and by the use of an airflow dependent vacuum signal strength for control.
X