Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Prediction Method for Water Intrusion into the Engine Air Intake Duct while Running on Flooded Road at the Early Stage of Vehicle Development

2017-03-28
2017-01-1322
Vehicles are required durability in various environments all over the world. Especially water resistance on flooded roads is one of the important issues. To solve this kind of problem, a CFD technology was established in order to predict the water resistance performance of the vehicle at the early development stage. By comparison with vehicle tests on flooded roads, it is clarified the following key factors are required for accurate prediction; the vehicle velocity change, the vehicle height change and the air intake flow rate. Moreover, these three key factors should be appropriately determined from vehicle and engine specification to predict water intrusion for flooded roads at the early stage of development. In this paper, a methodology which determines appropriate analysis conditions mentioned above for flooding simulation from vehicle and engine specification is described. The methodology enables us to determine whether the vehicle provides sufficient waterproofness.
Journal Article

Development of Cooling Fan Model and Heat Exchange Model of Condenser to Predict the Cooling and the Heat Resistance Performance of Vehicle

2020-04-14
2020-01-0157
The cooling performance and the heat resistance performance of commercial vehicle are balanced with aerodynamic performance, output power of powertrain, styling, cost and many other parameters. Therefore, it is desired to predict the cooling performance and the heat resistance performance with high accuracy at the early stage of development. Among the three basic forms of heat transfer (conduction, convection and radiation), solving thermal conduction accurately is difficult, because modeling of “correct shape” and setting of coefficient of thermal conductivity for each material need many of time and efforts at the early stage of development. Correct shape means that each part should be attached correctly to generate the solid mesh with high quality. Therefore, it is more efficient and realistic method to predict the air temperature distribution around the rubber/resin part instead of using the surface temperature at the preliminary design stage.
Technical Paper

Prediction Method of Snow Ingress Amount into the Engine Air Intake Duct Employing LES and Detailed Snow Accumulation Model

2019-04-02
2019-01-0805
When a vehicle is driven in snowy conditions, if a proper air intake design is not adopted, the snow lifted by the leading vehicles may penetrate into the engine air intake, in case of large snow ingress amount, causing a power drop. The evaluation of such risk for the intake is carried out through climatic wind tunnel tests, which cannot be conducted at the early stage of vehicle development when the prototype vehicle does not exist. In order to study that risk prior to the prototype vehicle delivery, computational fluid dynamics (CFD) which predicts the snow ingress amount accurately was established with taking into account unsteady air flow and snow accumulation. Large Eddy Simulation (LES) was used to reproduce the unsteady flow field, leading to a good agreement of the flow downstream from the snow generator with the experimental one measured by Particle Image Velocimetry (PIV). As for the snow particle behavior model, the Lagrangian method was chosen.
X