Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

Constitutive Modeling of Polymers Subjected to High Strain Rates

2001-03-05
2001-01-0472
A biaxial test procedure is used to assess the constitutive properties of polymers in tension. The constitutive constants are derived for high strain rate applications such as those associated with crashworthiness studies. The test procedure is used in conjunction with a time- and strain-dependent quasi-linear viscoelastic constitutive law consisting of a Mooney-Rivlin formulation combined with Maxwell elements. The procedure is demonstrated by describing the stress vs. strain relationship of a rubber specimen subjected to a step-relaxation input. The constitutive equation is transformed from a nonlinear convolution integral to a set of first order differential equations. These equations, with the appropriate boundary conditions, are solved numerically to obtain transient stresses in two principal directions. Material constants for use in the explicit LS-Dyna non-linear finite element code are provided.
Technical Paper

Experimental Devices to Simulate Toepan and Floorpan Intrusion

1997-02-24
970574
Two sled systems capable of producing structural intrusion in the footwell region of an automobile have been developed. The first, System A, provides translational toepan intrusion using actuator pistons to drive the footwell structure of the test buck. These actuator pistons are coupled to the hydraulic decelerator of the test sled and are powered by hydraulic energy from the impact event. Resulting footwell intrusion is characterized using a toepan pulse analogous to the acceleration pulse used to characterize sled and vehicle decelerations. Sled tests with System A indicate that it is capable of accurately and repeatably simulating toepan/floorpan intrusion into the occupant footwell. Test results, including a comparison of lower extremity response between intrusion sled tests and no intrusion sled tests, indicate that this system is capable of repeatable, controlled structural intrusion during a sled test impact.
Technical Paper

Variability of Head Injury Criteria with the Hybrid III Dummy

1996-02-01
960094
Drop testing of the Hybrid III dummy head was conducted to determine variations in Head Injury Criteria values with the point of head impact, and how the variations relate to actual head injuries. Head drop tests indicated that impacts to the temple and lower forehead posed the greatest injury risks. Moreover, the application of chamois or chalk over the head, a common practice among safety researchers to detect racial lacerations and head contacts, was found to significantly lower Head Injury Criteria values for all impact locations.
Technical Paper

Reproducing the Structural Intrusion of Frontal Offset Crashes in the Laboratory Sled Test Environment

1995-02-01
950643
The response and risk of injury for occupants in frontal crashes are more severe when structural deformation occurs in the vehicle interior. To reproduce this impact environment in the laboratory, a sled system capable of producing structural intrusion in the footwell region has been developed. The system couples the hydraulic decelerator of the sled to actuator pistons attached to the toepan and floorpan structure of the buck. Characterization of the footwell intrusion event is based on developing a toepan pulse analogous to the acceleration pulse used to characterize sled and vehicle decelerations. Preliminary sled tests with the system indicate that it is capable of simulating a complex sequence of toepan/floorpan translations and rotations.
Technical Paper

Thoracic Trauma Assessment Formulations for Restrained Drivers in Simulated Frontal Impacts

1994-11-01
942206
Sixty-three simulated frontal impacts using cadaveric specimens were performed to examine and quantify the performance of various contemporary automotive restraint systems. Test specimens were instrumented with accelerometers and chest bands to characterize their mechanical responses during the impact. The resulting thoracic injury severity was determined using detailed autopsy and was classified using the Abbreviated Injury Scale. The ability of various mechanical parameters and combinations of parameters to assess the observed injury severities was examined and resulted in the observation that belt restraint systems generally had higher injury rates than air bag restraint systems for the same level of mechanical responses. To provide better injury evaluations from observed mechanical parameters without prior knowledge of what restraint system was being used, a dichotomous process was developed.
Technical Paper

Research Program to Investigate Lower Extremity Injuries

1994-03-01
940711
The University of Virginia is investigating the biomechanical response and the injury tolerance of the lower extremities. This paper presents the experimental and simulation work used to study the injury patterns and mechanisms of the ankle/foot complex. The simulation effort has developed a segmented lower limb and foot model for an occupant simulator program to study the interactions of the foot with intruding toepan and pedal components. The experimental procedures include static tests, pendulum impacts, and full-scale sled tests with the Advanced Anthropomorphic Test Device and human cadavers. In these tests, the response of the lower extremities is characterized with analogous dummy and cadaver instrumentation packages that include strain gauges, electrogoniometers, angular rate sensors, accelerometers, and load cells. An external apparatus is applied to the surrogate's lower extremities to simulate the effects of muscle tensing.
Technical Paper

The Tolerance of the Femoral Shaft in Combined Axial Compression and Bending Loading

2009-11-02
2009-22-0010
The likelihood of a front seat occupant sustaining a femoral shaft fracture in a frontal crash has traditionally been assessed by an injury criterion relying solely on the axial force in the femur. However, recently published analyses of real-world data indicate that femoral shaft fracture occurs at axial loads levels below those found experimentally. One hypothesis attempting to explain this discrepancy suggests that femoral shaft fracture tends to occur as a result of combined axial compression and applied bending. The current study aims to evaluate this hypothesis by investigating how these two loading components interact. Femoral shafts harvested from human cadavers were loaded to failure in axial compression, sagittal plane bending, and combined axial compression and sagittal plane bending.
Technical Paper

On the Importance of Nonlinearity of Brain Tissue Under Large Deformations

2003-10-27
2003-22-0005
Linear shear properties of human and bovine brain tissue were determined from transient stress-relaxation experiments and their material functions were compared. Quasi-linear viscoelastic theory was then utilized to determine material constants for bovine brain tissue subjected to large deformations. The range of applicability for linear and quasi-linear constitutive models of brain tissue was determined. A nonlinear Green-Rivlin constitutive model was subsequently applied to characterize temporal nonlinearity of bovine brain tissue in shear. Overall, 10 brain specimens from 5 fresh human cadavers and 156 brain specimens from 26 fresh bovine cadaver brains were used to quantify and compare shear brain responses under various loading conditions. The assumptions of homogeneity, isotropy, and incompressibility of brain material were made in order to reduce the required number of experiments.
Technical Paper

Methodology for Measuring Tibial and Fibular Loads in a Cadaver

2002-03-04
2002-01-0682
Crash test dummies rely on biomechanical data from cadaver studies to biofidelically reproduce loading and predict injury. Unfortunately, it is difficult to obtain equivalent measurements of leg loading in a dummy and a cadaver, particularly for bending moments. A methodology is presented here to implant load cells in the tibia and fibula while minimally altering the functional anatomy of the two bones. The location and orientation of the load cells can be measured in all six degrees of freedom from post-test radiographs. Equations are given to transform tibial and fibular load cell measurements from a cadaver or dummy to a common leg coordinate frame so that test data can be meaningfully compared.
Technical Paper

Load Distribution-Specific Viscoelastic Characterization of the Hybrid III Chest

2002-03-04
2002-01-0024
This paper presents a load distribution-specific viscoelastic structural characterization of the Hybrid III 50th percentile male anthropomorphic test dummy thorax. The dummy is positioned supine on a high-speed material testing machine and ramp-and-hold tests are performed using a distributed load, a hub load, and a diagonal belt load applied to the anterior thorax of the dummy. The force-deflection response is shown to be linear viscoelastic for all loading conditions when the internal dummy instrumentation is used to measure chest deflection. When an externally measured displacement (i.e., a measurement that includes the superficial skin material) is used for the characterization, a quasilinear viscoelastic characterization is necessary. Linear and quasilinear viscoelastic model coefficients are presented for all three loading conditions.
Technical Paper

Comparative Evaluation of Dummy Response with Thor-Lx/HIIIr and Hybrid III Lower Extremities

2002-03-04
2002-01-0016
Multiple series of frontal sled tests were performed to evaluate the new Thor-Lx/HIIIr lower extremity developed by the National Highway Traffic Safety Administration for retrofit use on the 50th percentile male Hybrid III. This study's objective was to compare the Thor-Lx/HIIIr to the existing Hybrid III dummy leg (HIII) from the standpoint of repeatability and effects on femur and upper body response values.\ The test-to-test repeatability of the dummy responses, as measured by the coefficient of variation (CV), was generally acceptable (CV < 10%) for all of the test conditions for both legs. Overall, tests with the Thor-Lx/HIIIr legs produced upper body movement and injury criteria values for the head and chest that were acceptably consistent and were generally indistinguishable from those produced with the HIII leg. Low right femur loads, which ranged from 4 to 25 percent of the injury assessment reference value, varied substantially test-to-test for tests with both types of legs.
Technical Paper

Occupant Kinematics in Laboratory Rollover Tests: ATD Response and Biofidelity

2014-11-10
2014-22-0012
Rollover crashes are a serious public health problem in United States, with one third of traffic fatalities occurring in crashes where rollover occurred. While it has been shown that occupant kinematics affect the injury risk in rollover crashes, no anthropomorphic test device (ATD) has yet demonstrated kinematic biofidelity in rollover crashes. Therefore, the primary goal of this study was to assess the kinematic response biofidelity of six ATDs (Hybrid III, Hybrid III Pedestrian, Hybrid III with Pedestrian Pelvis, WorldSID, Polar II and THOR) by comparing them to post mortem human surrogate (PMHS) kinematic response targets published concurrently; and the secondary goal was to evaluate and compare the kinematic response differences among these ATDs.
Technical Paper

Biomechanical Response and Physical Properties of the Leg, Foot, and Ankle

1996-11-01
962424
The anatomical dimensions, inertial properties, and mechanical responses of cadaver leg, foot, and ankle specimens were evaluated relative to those of human volunteers and current anthropometric test devices. Dummy designs tested included the Hybrid III, Hybrid III with soft joint stops, ALEX I, and the GM/FTSS lower limbs. Static and dynamic tests of the leg, foot, and ankle were conducted at the laboratories of the Renault Biomedical Research Department and the University of Virginia. The inertial and geometric properties of the dummy lower limbs were measured and compared with cadaver properties and published volunteer values. Compression tests of the leg were performed using static and dynamic loading to determine compliance of the foot and ankle. Quasi-static rotational properties for dorsiflexion and inversion/eversion motion were obtained for the dummy, cadaver, and volunteer joints of the hindfoot.
Journal Article

A Computational Study of Rear-Facing and Forward-Facing Child Restraints

2008-04-14
2008-01-1233
A recent study of U.S. crash data has shown that children 0-23 months of age in forward-facing child restraint systems (FFCRS) are 76% more likely to be seriously injured in comparison to children in rear-facing child restraint systems (RFCRS). Motivated by the epidemiological data, seven sled tests of dummies in child seats were performed at the University of Virginia using a crash pulse similar to FMVSS 213 test conditions. The tests showed an advantage for RFCRS; however, real-world crashes include a great deal of variability among factors that may affect the relative performance of FFCRS and RFCRS. Therefore, this research developed MADYMO computational models of these tests and varied several real-world parameters. These models used ellipsoid models of Q-series child dummies and facet surface models of American- and Swedish- style convertible child restraints (CRS).
Technical Paper

Analysis of upper extremity response under side air bag loading

2001-06-04
2001-06-0016
Computer simulations, dummy experiments with a new enhanced upper extremity, and small female cadaver experiments were used to analyze the small female upper extremity response under side air bag loading. After establishing the initial position, three tests were performed with the 5th percentile female hybrid III dummy, and six experiments with small female cadaver subjects. A new 5th percentile female enhanced upper extremity was developed for the dummy experiments that included a two-axis wrist load cell in addition to the existing six-axis load cells in both the forearm and humerus. Forearm pronation was also included in the new dummy upper extremity to increase the biofidelity of the interaction with the handgrip. Instrumentation for both the cadaver and dummy tests included accelerometers and magnetohydrodynamic angular rate sensors on the forearm, humerus, upper and lower spine.
Technical Paper

Whole-body Response for Pedestrian Impact with a Generic Sedan Buck

2015-11-09
2015-22-0016
To serve as tools for assessing injury risk, the biofidelity of whole-body pedestrian impact dummies should be validated against reference data from full-scale pedestrian impact tests. To facilitate such evaluations, a simplified generic vehicle-buck has been recently developed that is designed to have characteristics representative of a generic small sedan. Three 40 km/h pedestrian-impact tests have been performed, wherein Post Mortem Human Surrogates (PMHS) were struck laterally in a mid-gait stance by the buck. Corridors for select trajectory measures derived from these tests have been published previously. The goal of this study is to act as a companion dataset to that study, describing the head velocities, body region accelerations (head, spine, pelvis, lower extremities), angular velocities, and buck interaction forces, and injuries observed during those tests.
X