Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Wear Mechanism in Cummins M-11 High Soot Diesel Test Engines

The Cummins M-11 high soot diesel engine test is a key tool in evaluating lubricants for the new PC-7 (CH-4) performance category. M-11 rocker arms and crossheads from tests with a wide range of lubricant performance were studied by surface analytical techniques. Abrasive wear by primary soot particles is supported by the predominant appearance of parallel grooves on the worn parts with their widths matching closely the primary soot particle sizes. Soot abrasive action appears to be responsible for removing the protective antiwear film and, thus, abrades against metal parts as well. Subsequent to the removal of the antiwear film, carbide particles, graphite nodules, and other wear debris are abraded, either by soot particles or sliding metal-metal contact, from the crosshead and rocker arm metal surfaces. These particles further accelerate abrasive wear. In addition to abrasive wear, fatigue wear was evident on the engine parts.
Technical Paper

Total Phosphorus Detection and Mapping in Catalytic Converters

The poisoning of three way catalysts (TWC) by the phosphorus contained in oil formulations containing zinc dialkyldithiophosphate (ZDDP) is examined. Catalysts were exposed to various types of ZDDP and detergents under conditions that were known to reduce performance through phosphorus poisoning without the blocking of sites by formation of glazing. The presence of phosphorus was detected with energy dispersive x-ray spectroscopy (EDX). In addition to analyzing the surface concentration of the phosphorus on the washcoat, the catalyst was cross cut so phosphorus that diffused into the washcoat could be mapped. The total phosphorus in the catalyst could then be calculated. The amount of total phosphorus detected correlated well with the reduced activity of the catalyst as measured by the temperature of 50% conversion.