Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Journal Article

External Biofidelity Evaluation of Pedestrian Leg-Form Impactors

2017-03-28
2017-01-1450
Current state-of-the-art vehicles implement pedestrian protection features that rely on pedestrian detection sensors and algorithms to trigger when impacting a pedestrian. During the development phase, the vehicle must “learn” to discriminate pedestrians from the rest of potential impacting objects. Part of the training data used in this process is often obtained in physical tests utilizing legform impactors whose external biofidelity is still to be evaluated. This study uses THUMS as a reference to assess the external biofidelity of the most commonly used impactors (Flex-PLI, PDI-1 and PDI-2). This biofidelity assessment was performed by finite element simulation measuring the bumper beam forces exerted by each surrogate on a sedan and a SUV. The bumper beam was divided in 50 mm sections to capture the force distribution in both vehicles. This study, unlike most of the pedestrian-related literature, examines different impact locations and velocities.
Technical Paper

Wear Mechanism in Cummins M-11 High Soot Diesel Test Engines

1998-05-04
981372
The Cummins M-11 high soot diesel engine test is a key tool in evaluating lubricants for the new PC-7 (CH-4) performance category. M-11 rocker arms and crossheads from tests with a wide range of lubricant performance were studied by surface analytical techniques. Abrasive wear by primary soot particles is supported by the predominant appearance of parallel grooves on the worn parts with their widths matching closely the primary soot particle sizes. Soot abrasive action appears to be responsible for removing the protective antiwear film and, thus, abrades against metal parts as well. Subsequent to the removal of the antiwear film, carbide particles, graphite nodules, and other wear debris are abraded, either by soot particles or sliding metal-metal contact, from the crosshead and rocker arm metal surfaces. These particles further accelerate abrasive wear. In addition to abrasive wear, fatigue wear was evident on the engine parts.
Technical Paper

On-board Diagnostic Expert System via an Enhanced Fault Tree Model

2006-04-03
2006-01-1567
We propose to enhance reliability based diagnosis by enhancing the fault tree model with a sensor layer for capturing evidence. We recognized the need for an automated diagnostic process that can predict and report component failure in vehicles prior to total failure of any system in the vehicle. We also want to take advantage of evidence that can be derived from sensors to reduce the amount of tests required to identify failed components.
Technical Paper

The Effects of Impurities on the Corrosion Behavior of Iron in Methanolic Solutions

1993-10-01
932342
The electrochemical and corrosion behavior of metals in aqueous environments has received substantial attention. However, relatively little work has been devoted to the electrochemistry and corrosion of metals in non-aqueous environments. Now, with greater pressures to increase fuel efficiencies and decrease exhaust emissions, alternatives and additives to gasoline (including methanol and ethanol) are receiving increased attention from government agencies and automobile manufacturers. Unfortunately, fundamental studies of the corrosion behavior of metals in these solutions are scarce. The objective of the present work is to investigate the electrochemical and corrosion behavior of iron in methanolic solutions containing Cl, H+, SO42-, and H2O. To accomplish this, a full factorial design test matrix was developed to systematically evaluate the effects of these impurities on the corrosion behavior of iron.
Technical Paper

Measurement Techniques for Angular Velocity and Acceleration in an impact Environment

1997-02-24
970575
The University of Virginia is investigating the use of a magnetohydrodynamic (MHD) angular rate sensor to measure head angular acceleration in impact testing. Output from the sensor, which measures angular velocity, must be differentiated to produce angular acceleration. As a precursor to their use in actual testing, a torsional pendulum was developed to analyze an MHD sensor's effectiveness in operating under impact conditions. Differentiated and digitally filtered sensor data provided a good match with the vibratory response of the pendulum for various magnitudes of angular acceleration. Subsequent head drop tests verified that MHD sensors are suitable for measuring head angular acceleration in impact testing.
Technical Paper

Influence of Vehicle Body Type on Pedestrian Injury Distribution

2005-04-11
2005-01-1876
Pedestrian impact protection has been a growing area of research over the past twenty or more years. The results from many studies have shown the importance of providing protection to vulnerable road users as a means of reducing roadway fatalities. Most of this research has focused on the vehicle fleet as a whole in datasets that are dominated by passenger cars (cars). Historically, the influence of vehicle body type on injury distribution patterns for pedestrians has not been a primary research focus. In this study we used the Pedestrian Crash Data Study (PCDS) database of detailed pedestrian crash investigations to identify how injury patterns differ for pedestrians struck by light trucks, vans, and sport utility vehicles (LTVs) from those struck by cars. AIS 2+ and 3+ injuries for each segment of vehicles were mapped back to both the body region of the pedestrian injured and the vehicle source linked to that injury in the PCDS database.
Technical Paper

Reducing the Risk of Driver Injury from Common Steering Control Devices in Frontal Collisions

1999-03-01
1999-01-0759
Steering control devices are used by people who have difficulty gripping the steering wheel. These devices have projections that may extend up to 14 cm toward the occupant. Testing indicated that contact with certain larger steering control devices with tall rigid projections could severely injure a driver in a frontal collision. In order to reduce this injury risk, an alternative, less injurious design was developed and tested. This design, which included replacing unyielding aluminum projections with compliant plastic ones, produced significantly lower peak contact pressure and less damage to the chest of a cadaver test subject, while maintaining the strength necessary to be useful.
Technical Paper

Correction of Beam Steering for Optical Measurements in Turbulent Reactive Flows

2021-04-06
2021-01-0428
The application of optical diagnostics in turbulent reactive flows often suffers from the beam steering (BS) effects, resulting in degraded image quality and/or measurement accuracy. This work investigated a method to correct the BS effects to improve the accuracy of optical diagnostics, with particle imagine velocimetry (PIV) measurements on turbulent reactive flames as an example. The proposed method used a guiding laser to correct BS. Demonstration in laboratory turbulent flames showed promising results where the accuracy of PIV measurement was significantly enhanced. Applicability to more complicated and practical situations are discussed.
Technical Paper

Rollover Testing of a Sport Utility Vehicle (SUV) with an Inertial Measurement Unit (IMU)

2015-04-14
2015-01-1475
A follow-up case study on rollover testing with a single full-size sport utility vehicle (SUV) was conducted under controlled real-world conditions. The purpose of this study was to conduct a well-documented rollover event that could be utilized in evaluating various methods and techniques over the phases associated with rollover accidents. The phases documented and discussed, inherent to rollovers, are: pre-trip, trip, and rolling phases. With recent advances in technology, new devices and techniques have been designed which improve the ability to capture and document the unpredictable dynamic events surrounding vehicle rollovers. One such device is an inertial measurement unit (IMU), which utilizes GPS technology along with integrated sensors to report and record measured dynamic parameters real-time. The data obtained from a RT-4003 IMU device are presented and compared along with previous test data and methodology.
Journal Article

Improving Earpiece Accelerometer Coupling to the Head

2008-12-02
2008-01-2978
As accurate measuring of head accelerations is an important aspect in predicting head injury, it is important that the measuring sensor be well-coupled to the head. Various sensors and sensor mounting schemes have been attempted in the past with varying results. This study uses a small, implantable acceleration sensor pack in the ear to study impact coupling with the human skull. The output from these ear-mounted accelerometers is compared to laboratory reference accelerometers rigidly attached to the skull of two cadaveric head specimens for both low-amplitude oscillatory tests and high-amplitude impact drop tests. The combination of sensor type and mounting scheme demonstrates the feasibility of using ear mounted sensors to predict head acceleration response. Previously reported progressive phase lag was not seen in this study, with the comparison between ear mounted accelerometers and rigidly mounted head accelerometers ranging from very good to excellent.
Journal Article

A Quantitative Safety Assessment Methodology for Safety-Critical Programmable Electronic Systems Using Fault Injection

2009-04-20
2009-01-0760
Given the increased use of programmable embedded electronic systems (PEES) in automotive applications and their vital importance, it is not only important for engineers to design PEES in such a way to meet or exceed safety requirements but also quantify how “safe” these systems are. At the University of Virginia's Center for Safety-Critical Systems, we have developed a safety quantification methodology for embedded real time safety-related systems. The goal of the safety quantification methodology is to provide a generic but rigorous and systematic way of characterizing the dependability behavior of embedded systems that is applicable to a broad range of applications from automotive to nuclear. This paper presents a quantitative safety assessment methodology for safety-critical embedded systems using fault injection (FI). This methodology has been developed, refined and applied to a number of commercial safety-grade systems in the railway, nuclear and avionics industries.
Technical Paper

Characterizing Galling Conditions in Sheet Metal Stamping

2024-04-09
2024-01-2856
Multiple experimental studies were performed on galling intiation for variety of tooling materials, coatings and surface treatments, sheet materials with various surface textures and lubrication. Majority of studies were performed for small number of samples in laboratory conditions. In this paper, the methodology of screening experiment using different combinations of tooling configurations and sheet material in the lab followed by the high volume small scale U-bend performed in the progressive die on the mechanical press is discussed. The experimental study was performed to understand the effect of the interface between the sheet metal and the die surface on sheet metal flow during stamping operations. Aluminum sheet AA5754 2.5mm thick was used in this experimentation. The sheet was tested in laboratory conditions by pulling between two flat insert with controllable clamping force and through the drawbead system with variable radii of the female bead.
X