Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Rollover Initiation Simulations for Designing Rollover Initiation Test System (RITS)

2014-04-01
2014-01-0530
Some rollover test methods, which impose a touchdown condition on a test vehicle, have been developed to study vehicle crashworthiness and occupant protection in rollover crashes. In ground-tripped rollover crashes, speed, steering maneuver, braking, vehicle inertial and geometric properties, topographical and road design characteristics, and soil type can all affect vehicle touchdown conditions. It is presumed that while there may be numerous possible combinations of kinematic metrics (velocity components and orientation) at touchdown, there are also numerous combinations of metrics that are not likely to occur in rollover crashes. To determine a realistic set of touchdown conditions to be used in a vehicle rollover crash test, a lateral deceleration sled-based non-destructive rollover initiation test system (RITS) with a fully programmable deceleration pulse is in development.
Technical Paper

Recreational Off-Highway Vehicle Safety: Countermeasures for Ejection Mitigation in Rollover

2016-04-05
2016-01-1513
Recreational Off-Highway Vehicles (ROVs), since their introduction onto the market in the late-1990s, have been related to over 300 fatalities with the majority occurring in vehicle rollover. In recent years several organizations made attempts to improve ROV safety. This paper is intended to evaluate ejection mitigation measures considered by the ROV manufacturers. Evaluated countermeasures include two types of occupant restraints (three and four point) and two structural barriers (torso bar, door with net). The Rollover protection structure (ROPS) provided by the manufacturer was attached to a Dynamic Rollover Test System (DRoTS), and a full factorial series of roll/drop/catch tests was performed. The ROV buck was equipped with two Hybrid III dummies, a 5th percentile female and a 95th percentile male. Additionally, occupant and vehicle kinematics were recorded using optoelectronic stereophotogrammetric camera system.
Technical Paper

Influence of Driver Input on the Touchdown Conditions and Risk of Rollover in Case of Steering Induced Soil-Trip Rollover Crashes

2016-04-05
2016-01-1514
Some rollover testing methodologies require specification of vehicle kinematic parameters including travel speed, vertical velocity, roll rate, and pitch angle, etc. at the initiation of vehicle to ground contact, which have been referred to as touchdown conditions. The complexity of the vehicle, as well as environmental and driving input characteristics make prediction of realistic touchdown conditions for rollover crashes, and moreover, identification of parameter sensitivities of these characteristics, is difficult and expensive without simulation tools. The goal of this study was to study the sensitivity of driver input on touchdown parameters and the risk of rollover in cases of steering-induced soil-tripped rollovers, which are the most prevalent type of rollover crashes. Knowing the range and variation of touchdown parameters and their sensitivities would help in picking realistic parameters for simulating controlled rollover tests.
Technical Paper

Rollover Testing of a Sport Utility Vehicle (SUV) with an Inertial Measurement Unit (IMU)

2015-04-14
2015-01-1475
A follow-up case study on rollover testing with a single full-size sport utility vehicle (SUV) was conducted under controlled real-world conditions. The purpose of this study was to conduct a well-documented rollover event that could be utilized in evaluating various methods and techniques over the phases associated with rollover accidents. The phases documented and discussed, inherent to rollovers, are: pre-trip, trip, and rolling phases. With recent advances in technology, new devices and techniques have been designed which improve the ability to capture and document the unpredictable dynamic events surrounding vehicle rollovers. One such device is an inertial measurement unit (IMU), which utilizes GPS technology along with integrated sensors to report and record measured dynamic parameters real-time. The data obtained from a RT-4003 IMU device are presented and compared along with previous test data and methodology.
Technical Paper

Occupant Kinematics in Laboratory Rollover Tests: ATD Response and Biofidelity

2014-11-10
2014-22-0012
Rollover crashes are a serious public health problem in United States, with one third of traffic fatalities occurring in crashes where rollover occurred. While it has been shown that occupant kinematics affect the injury risk in rollover crashes, no anthropomorphic test device (ATD) has yet demonstrated kinematic biofidelity in rollover crashes. Therefore, the primary goal of this study was to assess the kinematic response biofidelity of six ATDs (Hybrid III, Hybrid III Pedestrian, Hybrid III with Pedestrian Pelvis, WorldSID, Polar II and THOR) by comparing them to post mortem human surrogate (PMHS) kinematic response targets published concurrently; and the secondary goal was to evaluate and compare the kinematic response differences among these ATDs.
Technical Paper

Analysis of Vehicle Kinematics, Injuries and Restraints in DRoTS Tests to Match Unconstrained Rollover Crashes

2016-04-05
2016-01-1518
Multiple laboratory dynamic test methods have been developed to evaluate vehicle crashworthiness in rollover crashes. However, dynamic test methods remove some of the characteristics of actual crashes in order to control testing variables. These simplifications to the test make it difficult to compare laboratory tests to crashes. One dynamic method for evaluating vehicle rollover crashworthiness is the Dynamic Rollover Test System (DRoTS), which simulates translational motion with a moving road surface and constrains the vehicle roll axis to a fixed plane within the laboratory. In this study, five DRoTS vehicle tests were performed and compared to a pair of unconstrained steering-induced rollover tests. The kinematic state of the unconstrained vehicles at the initiation of vehicle-to-ground contact was determined using instrumentation and touchdown parameters were matched in the DRoTS tests.
Journal Article

Development of a Biofidelic Rollover Dummy-Part II: Validation of the Kinematic Response of THOR Multi-Body and Finite Element Models Relative to Response of the Physical THOR Dummy under Laboratory Rollover Conditions

2016-04-05
2016-01-1486
While over 30% of US occupant fatalities occur in rollover crashes, no dummy has been developed for such a condition. Currently, an efficient, cost-effective methodology is being implemented to develop a biofidelic rollover dummy. Instead of designing a rollover dummy from scratch, this methodology identifies a baseline dummy and modifies it to improve its response in a rollover crash. Using computational models of the baseline dummy, including both multibody (MB) and finite element (FE) models, the dummy’s structure is continually modified until its response is aligned (using BioRank/CORA metric) with biofidelity targets. A previous study (Part I) identified the THOR dummy as a suitable baseline dummy by comparing the kinematic responses of six existing dummies with PMHS response corridors through laboratory rollover testing.
Journal Article

Occupant Kinematics and Injury Response in Steer Maneuver-Induced Furrow Tripped Rollover Testing

2015-04-14
2015-01-1478
Occupant kinematics during rollover motor vehicle collisions have been investigated over the past thirty years utilizing Anthropomorphic Test Devices (ATDs) in various test methodologies such as dolly rollover tests, CRIS testing, spin-fixture testing, and ramp-induced rollovers. Recent testing has utilized steer maneuver-induced furrow tripped rollovers to gain further understanding of vehicle kinematics, including the vehicle's pre-trip motion. The current study consisted of two rollover tests utilizing instrumented test vehicles and instrumented ATDs to investigate occupant kinematics and injury response throughout the entire rollover sequences, from pre-trip vehicle motion to the position of rest. The two steer maneuver-induced furrow tripped rollover tests utilized a mid-sized 4-door sedan and a full-sized crew-cab pickup truck. The pickup truck was equipped with seatbelt pretensioners and rollover-activated side curtain airbags (RSCAs).
X