Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Case Studies Involving the Identification of Problematic Impulsive Effects on Vibration Signals

Recently, during the course of different experimental problem-solving activities on automotive vehicles, several examples have been found in which the identification of the cause of a particular vibration problem related to a specific component or subsystem involves detecting the presence of an impulsive effect on measured time signals. The difficulty in identifying such an effect arises due to the fact that the vibrational response signals measured during operation are dominated by relatively high amplitude harmonics which tend to mask the impulsive component. This article describes two case studies for this type of identification problem, a servo-assisted steering system and a front suspension shock absorber strut.
Technical Paper

Open-Loop Chestbands for Dynamic Deformation Measurements

Originally designed for measuring closed-loop contours such as those around a human thorax, the External Peripheral Instrument for Deformation Measurement (EPIDM), or chestband, was developed to improve the measurement of dummy and cadaver thoracic response during impact. In the closed-loop configuration, the chestband wraps around on itself forming a closed contour. This study investigates the use of the chestband for dynamic deformation measurements in an open-loop configuration. In the open-loop configuration, the chestband does not generally form a closed contour. This work includes enhanced procedures and algorithms for the calculation of chestband deformation contours including the determination of static and dynamic chestband contours under several boundary conditions.
Technical Paper

The Effect of Thermal Cycling on the Mechanical Properties of the Macro-Interface in Squeeze Cast Composites

Selectively reinforced, squeeze cast automotive pistons contain a boundary between the reinforced and unreinforced regions. This boundary is known as the macro-interface. Due to the difference in CTE between the composite and unreinforced matrix, the macro-interface can be the site of residual stress formation during cooling from the casting or heat treatment temperature. Subsequent thermal exposure, particularly thermal cycling, may produce cyclic stress at this interface causing it to experience fatigue. It has been found that matrix precipitates at the macro-interface and the aging behavior of the matrix also may play a role in defining the strength of the macro-interface during thermal cycling conditions.
Technical Paper

Development of Shim Specifications

In the past, each noise shim supplier had its own specifications to describe the properties of their noise shims (often also called as shim or damping shim). Due to that, it was difficult to compare the physical properties of noise shims from different suppliers. The main task was to define common specifications for daily quality/development tests. Traceability in prototype status and production was introduced establishing a clear declaration of noise shim deliveries with batch no. and “use by” date. Harmonization was created through standardized tests and procedures. In addition, a common noise shim database for all noise shim manufacturers was established. A more realistic compressibility test was developed to estimate the additional compressibility of noise shims based on bare pads under cold and hot conditions. These values are important to describe the axial decoupling at low pressure and the maximal displacement at high forces.
Technical Paper

LDS- A Back to Basics Approach to Develop Linings for Brake System Integration

It is always a challenging task for the braking industry to maintain consistent friction material behavior during brake system development. Lack of consistency in friction behavior causes significant disruptions in efforts to integrate friction material with the foundation brake system. This is especially true when new friction formulations and/or manufacturing processes are introduced during an application program. Furthermore, every new program has new requirements that introduce new challenges and issues to the brake and friction manufacturers. As issues arise during the Application development, engineers devise countermeasures that often entail new engineering techniques and methods. Sometimes, such countermeasures amount to inventions to cover the inadequacy of lining behavior during brake integration.
Technical Paper

Influence of Driver Input on the Touchdown Conditions and Risk of Rollover in Case of Steering Induced Soil-Trip Rollover Crashes

Some rollover testing methodologies require specification of vehicle kinematic parameters including travel speed, vertical velocity, roll rate, and pitch angle, etc. at the initiation of vehicle to ground contact, which have been referred to as touchdown conditions. The complexity of the vehicle, as well as environmental and driving input characteristics make prediction of realistic touchdown conditions for rollover crashes, and moreover, identification of parameter sensitivities of these characteristics, is difficult and expensive without simulation tools. The goal of this study was to study the sensitivity of driver input on touchdown parameters and the risk of rollover in cases of steering-induced soil-tripped rollovers, which are the most prevalent type of rollover crashes. Knowing the range and variation of touchdown parameters and their sensitivities would help in picking realistic parameters for simulating controlled rollover tests.
Technical Paper

Compatibility of High Performance Aluminum-Silicon Alloys with Laser Surface Modification

The goal of the present work is to reduce the environmental impact of car gasoline engines by developing lightweight engine components. The use of light-weight metals such as aluminum results in substantial reductions in CO2 emissions. Traditionally aluminum alloys have been restricted to low temperature applications because of their poor mechanical properties at elevated temperature. However, novel fabrication methods such as spray forming and rapid solidification have overcome the temperature limitation. Coupled with a surface coating designed to withstand corrosion and wear at elevated temperatures, these high performance alloys may be considered to replace steel-based components in automotive engines. In this work, hypereutectic aluminum-silicon (Al-Si) alloys produced via different fabrication routes were tested for laser coating with a nickel-chromium alloy. Experimental results demonstrating the response of these alloys to laser coating are presented.
Technical Paper

Application of Loop Shaping H-infinity Control to Diesel Engine Anti-Oscillation Strategy

The control of fuel delivery to minimize drivetrain oscillations is a major benefit to vehicle refinement and driveability. This paper describes the application of robust H-infinity loop-shaping control to the speed-fuel control loop. A one-degree-of-freedom controller structure (feedback only) is examined and applied to a small passenger car. Using careful implementation, the control algorithm is of low order and efficient requiring only limited microprocessor resources. The robust controller gives excellent performance when operated synchronously to engine rotation, where the dynamics become speed-dependent. Alternatively it can be operated satisfactorily at a fixed sample rate, asynchronous to engine rotation. The design is found to be eminently suitable for production.
Technical Paper

Development of a New Concept of Electrically Powered Hydraulic Steering

Electrically powered hydraulic steering systems (EPHS) are in mass production for about 6 years. They have been and still are very successful in the market as they follow the trend of supplying fully assembled and tested steering modules and the increasing demand for engine independent electrically powered systems. This paper illustrates the latest results of research and development in this sector leading to a new EPHS generation.
Technical Paper

Load Distribution-Specific Viscoelastic Characterization of the Hybrid III Chest

This paper presents a load distribution-specific viscoelastic structural characterization of the Hybrid III 50th percentile male anthropomorphic test dummy thorax. The dummy is positioned supine on a high-speed material testing machine and ramp-and-hold tests are performed using a distributed load, a hub load, and a diagonal belt load applied to the anterior thorax of the dummy. The force-deflection response is shown to be linear viscoelastic for all loading conditions when the internal dummy instrumentation is used to measure chest deflection. When an externally measured displacement (i.e., a measurement that includes the superficial skin material) is used for the characterization, a quasilinear viscoelastic characterization is necessary. Linear and quasilinear viscoelastic model coefficients are presented for all three loading conditions.
Technical Paper

A Mathematical Model for Design and Production Verification Planning

The paper focuses on various important decisions of verification and testing plans of the product during its design and production stages. In most of the product and process development projects, decisions on verification and testing are ad-hoc or based on traditions. Such decisions never guarantee the performance of the product as planned, during its whole life cycle. We propose an analytical approach to provide the concrete base for such crucial decisions of verification planning. Accordingly, a mathematical model is presented. Also, a case study of an automotive Electro-mechanical product is included to illustrate the application of the model.