Refine Your Search

Topic

Search Results

Technical Paper

Evaluation of Automobile Fluid Ignition on Hot Surfaces

2007-04-16
2007-01-1394
Automobile fires are a serious concern to manufacturers and consumers. However, understanding how the fires begin, in the confines of the engine compartment, is a difficult task. One known cause of fires is hot surface ignition (HSI) arising when engine fluids contact hot surfaces in the engine compartment or the exhaust train. In this study, the ignition of automotive gasoline on four hot surfaces: stainless and carbon steels from the heat shields, stainless steel from the exhaust manifold and cast iron cut from an intake manifold, was examined in a well-controlled, model study. Infra-red thermography and thermocouples were used to monitor surface temperatures prior to, during and after the fluid impacted the surface. This allowed evaluation and comparison of temperature evolution during fluid impact and the ignition event, resulting in an improved mechanistic understanding of the fluid/hot surface interaction.
Technical Paper

Experimental and Analytical Property Characterization of a Self-Damped Pneumatic Suspension System

2010-10-05
2010-01-1894
This study investigates the fundamental stiffness and damping properties of a self-damped pneumatic suspension system, based on both the experimental and analytical analyses. The pneumatic suspension system consists of a pneumatic cylinder and an accumulator that are connected by an orifice, where damping is realized by the gas flow resistance through the orifice. The nonlinear suspension system model is derived and also linearized for facilitating the properties characterization. An experimental setup is also developed for validating both the formulated nonlinear and linearized models. The comparisons between the measured data and simulation results demonstrate the validity of the models under the operating conditions considered. Two suspension property measures, namely equivalent stiffness coefficient and loss factor, are further formulated.
Technical Paper

A 1D Real-Time Engine Manifold Gas Dynamics Model Using Orthogonal Collocation Coupled with the Method of Characteristics

2019-04-02
2019-01-0190
In this paper, a new solution method is presented to study the effect of wave propagation in engine manifolds, which includes solving one-dimensional models for compressible flow of air. Velocity, pressure, and density profiles are found by solving a system of non-linear Partial Differential Equations (PDEs) in space and time derived from Euler’s equations. The 1D model includes frictional losses, area change, and heat transfer. The solution is traditionally found by utilizing the Method of Characteristics and applying finite difference solutions to the resulting system of ordinary differential equations (ODEs) over a discretized grid. In this work, orthogonal collocation is used to solve the system of ODEs that is defined along the characteristic curves. Orthogonal polynomials are utilized to approximate velocity, pressure, sound speed, and the characteristic curves along which the system of PDEs reduce to a system of ODEs.
Technical Paper

Extended Range Electric Vehicle Powertrain Simulation, and Comparison with Consideration of Fuel Cell and Metal-Air Battery

2017-03-28
2017-01-1258
The automobile industry has been undergoing a transition from fossil fuels to a low emission platform due to stricter environmental policies and energy security considerations. Electric vehicles, powered by lithium-ion batteries, have started to attain a noticeable market share recently due to their stable performance and maturity as a technology. However, electric vehicles continue to suffer from two disadvantages that have limited widespread adoption: charging time and energy density. To mitigate these challenges, vehicle Original Equipment Manufacturers (OEMs) have developed different vehicle architectures to extend the vehicle range. This work seeks to compare various powertrains, including: combined power battery electric vehicles (BEV) (zinc-air and lithium-ion battery), zero emission fuel cell vehicles (FCV)), conventional gasoline powered vehicles (baseline internal combustion vehicle), and ICE engine extended range hybrid electric vehicle.
Technical Paper

Design Optimization of the Transmission System for Electric Vehicles Considering the Dynamic Efficiency of the Regenerative Brake

2018-04-03
2018-01-0819
In this paper, gear ratios of a two-speed transmission system are optimized for an electric passenger car. Quasi static system models, including the vehicle model, the motor, the battery, the transmission system, and drive cycles are established in MATLAB/Simulink at first. Specifically, since the regenerative braking capability of the motor is affected by the SoC of battery and motors torque limitation in real time, the dynamical variation of the regenerative brake efficiency is considered in this study. To obtain the optimal gear ratios, iterations are carried out through Nelder-Mead algorithm under constraints in MATLAB/Simulink. During the optimization process, the motor efficiency is observed along with the drive cycle, and the gear shift strategy is determined based on the vehicle velocity and acceleration demand. Simulation results show that the electric motor works in a relative high efficiency range during the whole drive cycle.
Technical Paper

Recognizing Driver Braking Intention with Vehicle Data Using Unsupervised Learning Methods

2017-03-28
2017-01-0433
Recently, the development of braking assistance system has largely benefit the safety of both driver and pedestrians. A robust prediction and detection of driver braking intention will enable driving assistance system response to traffic situation correctly and improve the driving experience of intelligent vehicles. In this paper, two types unsupervised clustering methods are used to build a driver braking intention predictor. Unsupervised machine learning algorithms has been widely used in clustering and pattern mining in previous researches. The proposed unsupervised learning algorithms can accurately recognize the braking maneuver based on vehicle data captured with CAN bus. The braking maneuver along with other driving maneuvers such as normal driving will be clustered and the results from different algorithms which are K-means and Gaussian mixture model (GMM) will be compared.
Technical Paper

Fuel Cell Hybrid Powertrain Design Approach for a 2005 Chevrolet Equinox

2006-04-03
2006-01-0744
A fuel cell-battery hybrid powertrain SUV vehicle is designed using an optimized model-based design process. Powertrain and fuel storage components selected include a 65 kW Polymer Electrolyte Membrane Fuel Cell (PEMFC) power module, two 67 kW electric traction motors, a 35 MPa compressed hydrogen storage tank, a 70 kW nickel metal hydride battery pack, and a University of Waterloo in-house DC/DC converter design. Hardware control uses two controllers, a main supervisory controller and a subsystem controller in addition to any embedded component control modules. Two key innovations of this work include the hybrid control strategy and the DC/DC converter. The final powertrain characteristics are expected to meet a set of Vehicle Technical Specifications (VTS).
Technical Paper

Development of a High-Fidelity Series-Hybrid Electric Vehicle Model using a Mathematics-Based Approach

2011-05-17
2011-39-7201
The recent increase in oil prices and environmental concerns have attracted various research efforts on hybrid electric vehicles (HEVs) which provide promising alternatives to conventional engine-powered vehicles with better fuel economy and fewer emissions. To speed up the design and prototyping processes of new HEVs, a method that automatically generates mathematics equations governing the vehicle system response in an optimized symbolic form is desirable. To achieve this goal, we employed MapleSimTM, a new physical modeling tool developed by Maplesoft Inc., to develop the multi-domain model of a series-HEV, utilizing the symbolic computing algorithms of Maple software package to generate an optimized set of governing equations. The HEV model consists of a mean-value internal combustion engine (ICE), a chemistry-based Ni-MH battery pack, and a multibody vehicle model. Simulations are then used to demonstrate the performance of the developed HEV system.
Journal Article

Integrated Stability Control System for Electric Vehicles with In-wheel Motors using Soft Computing Techniques

2009-04-20
2009-01-0435
An electric vehicle model has been developed with four direct-drive in-wheel motors. A high-level vehicle stability controller is proposed, which uses the principles of fuzzy logic to determine the corrective yaw moment required to minimize the vehicle sideslip and yaw rate errors. A genetic algorithm has been used to optimize the parameters of the fuzzy controller. The performance of the controller is evaluated as the vehicle is driven through a double-lane-change maneuver. Preliminary results indicate that the proposed control system has the ability to improve the performance of the vehicle considerably.
Journal Article

Design of an Advanced Traction Controller for an Electric Vehicle Equipped with Four Direct Driven In-Wheel Motors

2008-04-14
2008-01-0589
The vision for the future automotive chassis is to interconnect the lateral, longitudinal, and vertical dynamics by separately controlling driving, braking, steering, and damping of each individual wheel. A major advantage of all wheel drive electric vehicles with four in-wheel motors is the possibility to control the torque and speed at each wheel independently. This paper proposes a traction controller for such a vehicle. It estimates the road's adhesion potential at each wheel and adjusts each motor voltage, such that the longitudinal slip is kept in an optimal range. For development and validation, a full vehicle model is designed in ADAMS/View software, in co-simulation with motor and control elements, modeled in MATLAB/Simulink.
Technical Paper

Fuel Cell Hybrid Control Strategy Development

2006-04-03
2006-01-0214
Supervisory control strategies for a hybrid fuel cell powertrain are developed and simulated using Simulink models and the Powertrain Systems Analysis Toolkit (PSAT). The control strategy selects the power splitting ratio between a 65kW Hydrogenics fuel cell power module and a 70kW Cobasys Nickel Metal Hydride (NiMH) battery pack. Simple control algorithms targeting a battery pack State of Charge (SOC), or maximizing the instantaneous powertrain efficiency are initially considered and analyzed. A comprehensive control strategy optimizing powertrain efficiency, vehicle performance, emissions, and long-term reliability is then developed and simulated. The simulated vehicle using the comprehensive control strategy with reliability considerations exhibits a 21% mileage improvement as compared to a simple rule-based control algorithm.
Technical Paper

A New Air Hybrid Engine Using Throttle Control

2009-04-20
2009-01-1319
In this work, a new air hybrid engine is introduced in which two throttles are used to manage the engine load in three modes of operation i.e. braking, air motor, and conventional mode. The concept includes an air tank to store pressurized air during braking and rather than a fully variable valve timing (VVT) system, two throttles are utilized. Use of throttles can significantly reduce the complexity of air hybrid engines. The valves need three fixed timing schedules for the three modes of operation. To study this concept, for each mode, the results of engine simulations using GT-Power software are used to generate the operating maps. These maps show the maximum braking torque as well as maximum air motor torque in terms of air tank pressure and engine speed. Moreover, the resulting maps indicate the operating conditions under which each mode is more effective. Based on these maps, a power management strategy is developed to achieve improved fuel economy.
Technical Paper

Modelling Diesel Engine Natural Gas Injection: Injector/Cylinder Boundary Conditions

1994-03-01
940329
Direct injected natural gas diesel engines are currently being developed. Numerical analyses results are presented for 20.0 MPa (≈ 3000 psia; 200 atm), 444 K, natural gas injection into 4.0 MPa cylinder air where the ambient turbulence field is representative of diesel engines. Two very important non-intuitive, observations are made. First, the seemingly reasonable spatially uniform velocity profile currently used at the injector exit is not appropriate, rather a double-hump profile is correct. Second, a spatially uniform, injector exit, temperature profile results in local temperature overestimates as large as 300 K. Considering the strong role of temperature on chemical kinetics, this second observation may have profound implications on the validity of conclusions reached using uniform exit profiles.
Technical Paper

Volumetric Tire Models for Longitudinal Vehicle Dynamics Simulations

2016-04-05
2016-01-1565
Dynamic modelling of the contact between the tires of automobiles and the road surface is crucial for accurate and effective vehicle dynamic simulation and the development of various driving controllers. Furthermore, an accurate prediction of the rolling resistance is needed for powertrain controllers and controllers designed to reduce fuel consumption and engine emissions. Existing models of tires include physics-based analytical models, finite element based models, black box models, and data driven empirical models. The main issue with these approaches is that none of these models offer the balance between accuracy of simulation and computational cost that is required for the model-based development cycle. To address this issue, we present a volumetric approach to model the forces/moments between the tire and the road for vehicle dynamic simulations.
Technical Paper

Advance Noise Path Analysis, A Robust Engine Mount Optimization Tool

2003-10-27
2003-01-3117
Many design problems are discovered often late in the development process, when design flexibility is limited. It is the art of the refinement engineers to find a solution to any unpredicted issues at this stage. The refinement process contains many hours of testing and requires many prototypes. Having an accurate experimental model of the system in this phase could reduce refinement time significantly. One of the areas that usually require refinement and tuning late in the design process is engine and body mounting systems. In this paper, we introduce a technique to optimize the mounting system of a vehicle for a given objective function using experimental/numerical analysis. To obtain an accurate model of the vehicle, we introduce an experimental procedure based upon the substructuring method. The method eliminates the need for any accurate finite element method of the vehicle. Experimental results of the implementation of this approach to a real vehicle are presented.
Technical Paper

A Review Study of Methods for Lithium-ion Battery Health Monitoring and Remaining Life Estimation in Hybrid Electric Vehicles

2012-04-16
2012-01-0125
Due to the high power and energy density and also relative safety, lithium ion batteries are receiving increasing acceptability in industrial applications especially in transportation systems with electric traction such as electric vehicles and hybrid electric vehicles. In this regard, to ensure performance reliability, accurate modeling of calendar life of such batteries is a necessity. In fact, potential failure of Li-ion battery packs remains a barrier to commercialization. Battery pack life is a critical feature to warranty and maintenance planning for hybrid vehicles, and will require adaptive control systems to account for the loss in vehicle range, and loss in battery charge and discharge efficiency. Failure not only results in large replacement costs, but also potential safety concerns such as overheating or short circuiting which may lead to fires.
Technical Paper

Parameter Identification of a Quasi-Dimensional Spark-Ignition Engine Combustion Model

2014-04-01
2014-01-0385
Parameter identification of a math-based spark-ignition engine model is studied in this paper. Differential-algebraic equations governing the dynamic behavior of the engine combustion model are derived using a quasi-dimensional modelling scheme. The model is developed based on the two-zone combustion theory with turbulent flame propagation through the combustion chamber [1]. The system of equations includes physics-based equations combined with the semi-empirical Wiebe function. The GT-Power engine simulator software [2], a powerful tool for design and development of engines, is used to extract the reference data for the engine parameter identification. The models is GT-Power are calibrated and validated with experimental results; thus, acquired data from the software can be a reliable reference for engine validation purposes.
Technical Paper

Modeling and Evaluation of Li-Ion Battery Performance Based on the Electric Vehicle Field Tests

2014-04-01
2014-01-1848
In this paper, initial results of Li-ion battery performance characterization through field tests are presented. A fully electrified Ford Escape that is equipped by three Li-ion battery packs (LiFeMnPO4) including an overall 20 modules in series is employed. The vehicle is in daily operation and data of driving including the powertrain and drive cycles as well as the charging data are being transferred through CAN bus to a data logger installed in the vehicle. A model of the vehicle is developed in the Powertrain System Analysis Toolkit (PSAT) software based on the available technical specification of the vehicle components. In this model, a simple resistive element in series with a voltage source represents the battery. Battery open circuit voltage (OCV) and internal resistance in charge and discharge mode are estimated as a function of the state of charge (SOC) from the collected test data.
Technical Paper

Comparison of Optimization Techniques for Lithium-Ion Battery Model Parameter Estimation

2014-04-01
2014-01-1851
Due to rising fuel prices and environmental concerns, Electric Vehicles (EVs) and Hybrid Electric Vehicles (HEVs) have been gaining market share as fuel-efficient, environmentally friendly alternatives. Lithium-ion batteries are commonly used in EV and HEV applications because of their high power and energy densities. During controls development of HEVs and EVs, hardware-in-the-loop simulations involving real-time battery models are commonly used to simulate a battery response in place of a real battery. One physics-based model which solves in real-time is the reduced-order battery model developed by Dao et al. [1], which is based on the isothermal model by Newman [2] incorporating concentrated solution theory and porous electrode theory [3]. The battery models must be accurate for effective control; however, if the battery parameters are unknown or change due to degradation, a method for estimating the battery parameters to update the model is required.
Technical Paper

Evaluation of Air Conditioning Impact on the Electric Vehicle Range and Li-Ion Battery Life

2014-04-01
2014-01-1853
Despite significant progress toward application of Li-ion batteries in electric vehicles, there are still major concerns about the range of electric vehicles and battery life. Depending on the climate of the region where the vehicle is in use, auxiliary loads could also play a significant role on the battery performance and durability. In this paper, the effect of air conditioning (AC) load on the electric range and Li-ion battery life is evaluated. For this purpose, a thermodynamic model for the vehicle cabin is developed and integrated to a battery model. The thermodynamic model takes the ambient conditions, solar load, and the vehicle drive cycle as inputs and calculates the instantaneous cabin temperature and humidity. The battery model, which represents a Li-on battery pack installed on a fully electrified Ford Escape 2009, consists of a voltage source in series with a lump resistance, a thermal sub-model, and a degradation sub-model to predict the battery capacity fade.
X