Refine Your Search

Topic

Search Results

Journal Article

Modal Based Rotating Disc Model for Disc Brake Squeal

2015-04-14
2015-01-0665
Modelling of disc in brake squeal analysis is complicated because of the rotation of disc and the sliding contact between disc and pads. Many analytical or analytical numerical combined modeling methods have been developed considering the disc brake vibration and squeal as a moving load problem. Yet in the most common used complex eigenvalue analysis method, the moving load nature normally has been ignored. In this paper, a new modelling method for rotating disc from the point of view of modal is presented. First finite element model of stationary disc is built and modal parameters are calculated. Then the dynamic response of rotating disc which is excited and observed at spatial fixed positions is studied. The frequency response function is derived through space and time transformations. The equivalent modal parameter is extracted and expressed as the function of rotation speed and original stationary status modal parameters.
Journal Article

On the Coupling Stiffness in Closed-Loop Coupling Disc Brake Model through Optimization

2015-04-14
2015-01-0668
The study and prevention of unstable vibration is a challenging task for vehicle industry. Improving predicting accuracy of braking squeal model is of great concern. Closed-loop coupling disc brake model is widely used in complex eigenvalue analysis and further analysis. The coupling stiffness of disc rotor and pads is one of the most important parameters in the model. But in most studies the stiffness is calculated by simple static force-deformation simulation. In this paper, a closed-loop coupling disc brake model is built. Initial values of coupling stiffness are estimated from static calculation. Experiment modal analysis of stationary disc brake system with brake line pressure and brake torques applied is conducted. Then an optimization process is initiated to minimize the differences between modal frequencies predicted by the stationary model and those from test. Thus model parameters more close to reality are found.
Journal Article

Experimental Investigation of the Mechanical Behavior of Aluminum Adhesive Joints under Mixed-Mode Loading Conditions

2018-04-03
2018-01-0105
In recent years, structural adhesives have rapidly become the preferred alternative to resistance spot welding in fabricating stronger, lighter aluminum connections. Connections inevitably undergo and must withstand complex quasi-static and/or dynamic loads during their service life. Therefore, understanding how loading conditions affect the mechanical behavior of adhesive joints is vital to their design and the advancement of structural safety. Quasi-static and dynamic tests are performed to analyze both the strength and failure modes of aluminum 6062 substrates bonded by an adhesive (Darbond EP-1506) for an array of loading directions. An Arcan test device, which enables application of mixed-mode loads ranging from pure peel (mode I) to pure shear (mode II) to the adhesive layer, is employed in quasi-static testing. A self-designed medium-speed test machine is utilized to perform dynamic testing.
Technical Paper

An Experiment and Simulation Study on Failure of High Voltage Cables under Indentation

2020-04-14
2020-01-0199
Failure of high voltage cables (HVCs) which sometimes occurs in electric vehicle collision is one of the fuses that leads to severe thermal runaway of the traction battery system, which has not gotten thorough investigations. This paper presents an experiment and simulation study on the failure behaviors of HVCs under indentation loadings. Tests were performed with different combinations of indenter (cylinder indenter with a diameter of 5 mm which was labeled as D5, cylinder indenter with a diameter of 15 mm which was labeled as D15 and wedge indenter with an angle of 60° which was labeled as V60) and loading speed (1.5 mm/min for quasi-static and 2m/s for dynamic). Experimental results indicated that the failure behavior of HVCs was both influenced by the indenter shape and loading speeds. Sharp indenter will led to a component failure sequence from outmost to innermost.
Technical Paper

Super-Twisting Second-Order Sliding Mode Control for Automated Drifting of Distributed Electric Vehicles

2020-04-14
2020-01-0209
Studying drifting dynamics and control could extend the usable state-space beyond handling limits and maximize the potential safety benefits of autonomous vehicles. Distributed electric vehicles provide more possibilities for drifting control with better grip and larger maximum drift angle. Under the state of drifting, the distributed electric vehicle is a typical nonlinear over-actuated system with actuator redundancy, and the coupling of input vectors impedes the direct use of control algorithm of upper. This paper proposes a novel automated drifting controller for the distributed electric vehicle. First, the nonlinear over-actuated system, comprised of driving system, braking system and steering system, is formulated and transformed to a square system through proposed integrative recombination method of control channel, making general nonlinear control algorithms suitable for this system.
Technical Paper

Fault-Tolerant Control of Regenerative Braking System on In-Wheel Motors Driven Electric Vehicles

2020-04-14
2020-01-0994
A novel fault tolerant brake strategy for In-wheel motor driven electric vehicles based on integral sliding mode control and optimal online allocation is proposed in this paper. The braking force distribution and redistribution, which is achieved in online control allocation segment, aim at maximizing energy efficiency of the vehicle and isolating faulty actuators simultaneously. The In-wheel motor can generate both driving torque and braking torque according to different vehicle dynamic demands. In braking procedure, In-wheel motors generate electric braking torque to achieve energy regeneration. The strategy is designed to make sure that the stability of vehicle can be guaranteed which means vehicle can follow desired trajectory even if one of the driven motor has functional failure.
Technical Paper

Design and Control of Thermal Management System for the Fuel Cell Vehicle in Low-Temperature Environment

2020-04-14
2020-01-0851
In low-temperature environment, heat supply requires considerable energy, which significantly increases energy consumption and shortens the mileage of electric vehicle. In the fuel cell vehicles, waste heat generated by the fuel cell system can supply heat for vehicle. In this paper, a thermal management system is designed for a the fuel cell interurban bus. Thermal management strategy aiming at temperature regulation for the fuel cell stack and the passenger compartment and minimal energy consumption is proposed. System model is developed and simulated based on AMESim and Matlab/Simulink co-simulation. Simulation results show that the fuel cell system can provide about 78 % energy of maximum heat requirement in -20 °C ambient temperature environment.
Journal Article

Design of an Advanced Traction Controller for an Electric Vehicle Equipped with Four Direct Driven In-Wheel Motors

2008-04-14
2008-01-0589
The vision for the future automotive chassis is to interconnect the lateral, longitudinal, and vertical dynamics by separately controlling driving, braking, steering, and damping of each individual wheel. A major advantage of all wheel drive electric vehicles with four in-wheel motors is the possibility to control the torque and speed at each wheel independently. This paper proposes a traction controller for such a vehicle. It estimates the road's adhesion potential at each wheel and adjusts each motor voltage, such that the longitudinal slip is kept in an optimal range. For development and validation, a full vehicle model is designed in ADAMS/View software, in co-simulation with motor and control elements, modeled in MATLAB/Simulink.
Technical Paper

Modelling and Performances of Hydraulic Magnetorheological Fluid Damper with Modified Bi-Viscosity Model

2020-04-14
2020-01-0988
A hydraulic chamber is embedded in serial with the accumulator of a normal mono-tube magnetorheological fluid damper (MRFD). The damper stiffness can be adjusted by changing the accumulator volume with the hydraulic chamber. The hydraulic chamber is connected to an electric pump and controlled by the braking-by-wire (BBW) system. A modified bi-viscosity magnetorheological fluid (MRF) model that explicitly includes the parameter of control current is proposed. A dynamic model of this hydraulic MRFD is subsequently set up based on the MRF model. Experiments are conducted to validate the model and simulations are carried out to study the influences of accumulator volume on the external performances. Results show that the hydraulic chamber is able to provide rapid variations of the external force through accumulator volume changes.
Journal Article

High Speed Imaging Study on the Spray Characteristics of Dieseline at Elevated Temperatures and Back Pressures

2014-04-01
2014-01-1415
Dieseline combustion as a concept combines the advantages of gasoline and diesel by offline or online blending the two fuels. Dieseline has become an attractive new compression ignition combustion concept in recent years and furthermore an approach to a full-boiling-range fuel. High speed imaging with near-parallel backlit light was used to investigate the spray characteristics of dieseline and pure fuels with a common rail diesel injection system in a constant volume vessel. The results were acquired at different blend ratios, and at different temperatures and back pressures at an injection pressure of 100MPa. The penetrations and the evaporation states were compared with those of gasoline and diesel. The spray profile was analyzed in both area and shape with statistical methods. The effect of gasoline percentage on the evaporation in the fuel spray was evaluated.
Journal Article

A New Control Strategy for Electric Power Steering on Low Friction Roads

2014-04-01
2014-01-0083
In vehicles equipped with conventional Electric Power Steering (EPS) systems, the steering effort felt by the driver can be unreasonably low when driving on slippery roads. This may lead inexperienced drivers to steer more than what is required in a turn and risk losing control of the vehicle. Thus, it is sensible for tire-road friction to be accounted for in the design of future EPS systems. This paper describes the design of an auxiliary EPS controller that manipulates torque delivery of current EPS systems by supplying its motor with a compensation current controlled by a fuzzy logic algorithm that considers tire-road friction among other factors. Moreover, a steering system model, a nonlinear vehicle dynamics model and a Dugoff tire model are developed in MATLAB/Simulink. Physical testing is conducted to validate the virtual model and confirm that steering torque decreases considerably on low friction roads.
Technical Paper

Tire Force Fast Estimation Method for Vehicle Dynamics Stability Real Time Control

2007-10-30
2007-01-4244
A tire force estimation algorithm is proposed for vehicle dynamic stability control (DSC) system to protect the vehicle from deviation of the normal dynamics attitude and to realize the improved dynamics stability in limited driving conditions. The developed algorithm is based on the theoretical analysis of all the subsystems of the active brake control in DSC system and modulation in DSC, and the robustness is achieved by a compensation method using nonlinear filter in the real time control. The software-in-loop simulation using Matlab/AMEsim and the ground test in the real car show the validation of this method.
Technical Paper

Implementation and Optimization of a Fuel Cell Hybrid Powertrain

2007-04-16
2007-01-1069
A fuel cell hybrid powertrain design is implemented and optimized by the University of Waterloo Alternative Fuels Team for the ChallengeX competition. A comprehensive set of bench-top and in-vehicle validation results are used to generate accurate fuel cell vehicle models for SIL/HIL control strategy testing and tuning. The vehicle is brought to a “99% buy-off” level of production readiness, and a detailed crashworthiness analysis is performed. The vehicle performance is compared to Vehicle Technical Specifications (VTS).
Technical Paper

Monitoring the Effect of RSW Pulsing on AHSS using FEA (SORPAS) Software

2007-04-16
2007-01-1370
In this study, a finite element software application (SORPAS®) is used to simulate the effect of pulsing on the expected weld thermal cycle during resistance spot welding (RSW). The predicted local cooling rates are used in combination with experimental observation to study the effect pulsing has on the microstructure and mechanical properties of Zn-coated DP600 AHSS (1.2mm thick) spot welds. Experimental observation of the weld microstructure was obtained by metallographic procedures and mechanical properties were determined by tensile shear testing. Microstructural changes in the weld metal and heat affect zone (HAZ) were characterized with respect to process parameters.
Technical Paper

A Control Oriented Simplified Transient Torque Model of Turbocharged Diesel Engines

2008-06-23
2008-01-1708
Due to the high cost of torque sensors, a calculation model of transient torque is required for real-time coordinating control purpose, especially in hybrid electric powertrains. This paper presents a feedforward calculation method based on mean value model of turbocharged non-EGR diesel engines. A fitting variable called fuel coefficient is defined in an affine relation between brake torque and fuel mass. The fitting of fuel coefficient is simplified to depend only on three variables (engine speed, boost pressure, injected fuel mass). And a two-layer feedforward neural network is utilized to fit the experimental data. The model is validated by load response test and ETC (European Transient Cycle) transient test. The RMSE (root mean square error) of the brake torque is less than 3%.
Technical Paper

A New Air Hybrid Engine Using Throttle Control

2009-04-20
2009-01-1319
In this work, a new air hybrid engine is introduced in which two throttles are used to manage the engine load in three modes of operation i.e. braking, air motor, and conventional mode. The concept includes an air tank to store pressurized air during braking and rather than a fully variable valve timing (VVT) system, two throttles are utilized. Use of throttles can significantly reduce the complexity of air hybrid engines. The valves need three fixed timing schedules for the three modes of operation. To study this concept, for each mode, the results of engine simulations using GT-Power software are used to generate the operating maps. These maps show the maximum braking torque as well as maximum air motor torque in terms of air tank pressure and engine speed. Moreover, the resulting maps indicate the operating conditions under which each mode is more effective. Based on these maps, a power management strategy is developed to achieve improved fuel economy.
Technical Paper

Development of a Virtual Fuel Cell Hybrid Vehicle Test Bed Based on Battery-in-the-Loop

2004-03-08
2004-01-0306
Battery is a vital part of a fuel cell hybrid vehicle, and also the most difficult part to model due to its nonlinearity. Therefore, This paper presents an integrated software-hardware solution to simulate the fuel cell vehicle power train more accurately based on battery-in-the-loop, with the aid of RT-LAB™. Moreover, the average modeling technique is used together with RT-LAB's distributed cluster technology to realize real-time simulation of the Field-Oriented Controlled induction motor drive, and the Boost DC/DC converter. As a result, a virtual test bed, which is very similar to actual power train, is set up. Finally, on this test bed some tests are performed to verify the existing battery model and soc estimation method, and to give more accurate fuel consumption results.
Technical Paper

Weld Failure in Formability Testing of Aluminum Tailor Welded Blanks

2001-03-05
2001-01-0090
The present work investigates weld failure modes during formability tests of multi-gauge aluminum Tailor Welded Blanks (TWBs). The limiting dome height test is used to evaluate formability of TWBs. Three gauge combinations utilizing aluminum alloy 5754 sheets are considered (2 to 1 mm, 1.6 to 1 mm and 2 to 1.6 mm). Three weld orientations have been considered: transverse, longitudinal and 45°. Interaction of several factors determines the type of failure that occurs in a TWB specimen. These factors are weld orientation, morphology and distribution of weld defects, and the magnitude of constraint imposed by the thicker sheet to the thin sheet. The last factor depends on the difference in thickness of the sheet pair and is usually expressed in terms of gauge ratio. In general TWBs show two different types of fracture: weld failure and failure of the thin aluminum sheet. Only the former will be discussed in this paper.
Technical Paper

Static and Dynamic Denting of Paint Baked AA6111 Panels: Comparison of Finite Element Predictions and Experiments

2001-10-16
2001-01-3047
This work presents comparisons of finite element model predictions of static and dynamic denting with experimental results. Panels were stamped from 0.81, 0.93 and 1.00mm AA6111-T4 and then paint-baked to produce representative automotive outer body panels. Each type of panel was statically and dynamically dented at three locations using a 25.4mm steel ball. Static denting was accomplished with incremental loading of 22.24N loads up to a maximum of 244.48N. Dynamic denting was accomplished by dropping the steel ball from heights ranging from 200mm to 1200mm. Multi-stage finite element analysis was performed using LS-DYNA1 and ABAQUS2 to predict the entire process of forming, spring-back, denting and final spring-back of the dented panels. The predicted results show good correlation with the experiments, but also highlight the sensitivity of the predictions to formulation of the finite element problem.
Technical Paper

Dynamic Characteristic Analysis of a Hydraulic Engine Mount with Lumped Model Based on Finite Element Analysis

2003-05-05
2003-01-1462
Hydraulic Engine Mount (HEM) is now widely used as a highly effective vibration isolator in automotive powertrain. A lumped parameter model is a traditional model for modeling the dynamic characteristics of HEM, in which the system parameters are usually obtained by experiments. In this paper, Computational Fluid Dynamics (CFD) method and nonlinear Finite Element Analysis (FEA) are used to determine the system parameters. A Fluid Structure Interaction (FSI) FEA technique is used to estimate the parameters of volumetric compliances, equivalent piston area, inertia and resistance of the fluid in the inertia track and decoupler of a HEM. A nonlinear FEA method is applied to determine the dynamic stiffness of rubber spring of the HEM. The system parameters predicated by FEA are compared favorably with experimental data and/or analytical solutions.
X