Refine Your Search

Topic

Author

Search Results

Technical Paper

Particle Image Velocimetry Measurements in the Piston Bowl of a DI Diesel Engine

1994-03-01
940283
Particle Image Velocimetry (PIV) was used to make gas velocity and turbulence measurements in a motored diesel engine. The experiments were conducted using a single-cylinder version of the Caterpillar 3406 production engine. One of the exhaust valves and the fuel injector port were used to provide optical access to the combustion chamber so that modifications to the engine geometry were minimal, and the results are representative of the actual engine. Measurements of gas velocity were made in a plane in the piston bowl using TiO2 seed particles. The light sheet necessary for PIV was formed by passing the beam from a Nd:YAG laser through the injector port and reflecting the beam off a conical mirror at the center of the piston. PIV data was difficult to obtain due to significant out-of-plane velocities. However, data was acquired at 25° and 15° before top dead center of compression at 750 rev/min.
Technical Paper

A Visual Investigation of CFD-Predicted In-Cylinder Mechanisms That Control First- and Second-Stage Ignition in Diesel Jets

2019-04-02
2019-01-0543
The long-term goal of this work is to develop a conceptual model for multiple injections of diesel jets. The current work contributes to that effort by performing a detailed modeling investigation into mechanisms that are predicted to control 1st and 2nd stage ignition in single-pulse diesel (n-dodecane) jets under different conditions. One condition produces a jet with negative ignition dwell that is dominated by mixing-controlled heat release, and the other, a jet with positive ignition dwell and dominated by premixed heat release. During 1st stage ignition, fuel is predicted to burn similarly under both conditions; far upstream, gases at the radial-edge of the jet, where gas temperatures are hotter, partially react and reactions continue as gases flow downstream. Once beyond the point of complete fuel evaporation, near-axis gases are no longer cooled by the evaporation process and 1st stage ignition transitions to 2nd stage ignition.
Technical Paper

Optical Investigation of the Impact of Pilot Ratio Variations on Natural Gas Diesel Dual-Fuel Combustion

2019-04-02
2019-01-1159
Experiments were performed on a small-bore optically accessible engine to investigate diesel pilot ignition (DPI) and reactivity controlled compression ignition (RCCI) dual-fuel combustion strategies with direct injection of natural gas and diesel. Parametric variations of pilot ratio were performed. Natural luminosity and OH chemiluminescence movies of the combustion processes were captured at 28.8 and 14.4 kHz, respectively. These data were used to create ignition maps, which aided in comparing the propagation modes of the two combustion strategies. Lower pilot ratios resulted in lower initial heat release rates, and the initial ignition sites were generally smaller and less luminous; for increased pilot ratios the initial portion of the heat release was larger, and the ignition sites were large and bright. Comparisons between diesel pilot ignition and reactivity controlled compression ignition showed differences in combustion propagation mechanisms.
Technical Paper

Modeling Early Injection Processes in HSDI Diesel Engines

2006-04-03
2006-01-0056
Numerical simulations were performed to investigate the combustion process in the Premixed Compression Ignition (PCI) regime in a light-duty diesel engine. The CHEMKIN code was implemented into an updated KIVA-3V release 2 code to simulate combustion and emission characteristics using reduced chemistry. The test engine used for validation data was a single cylinder version of a production 1.9L four-cylinder HSDI diesel engine. The engine operating condition considered was 2,000 rev/min and 5 bar BMEP load. Because high EGR levels are required for combustion retardation to make PCI combustion possible, the EGR rate was set at a relatively high level (40%) and injection timing sweeps were considered. Since injection timings were very advanced, impingement of the fuel spray on the piston bowl wall was unavoidable. To model the effects of fuel films on exhaust emissions, a drop and wall interaction model was implemented in the present code.
Technical Paper

Flamelet Modeling with LES for Diesel Engine Simulations

2006-04-03
2006-01-0058
Large Eddy Simulation (LES) with a flamelet time scale combustion model is used to simulate diesel combustion. The flamelet time scale model uses a steady-state flamelet library for n-heptane indexed by mean mixture fraction, mixture fraction variance, and mean scalar dissipation rate. In the combustion model, reactions proceed towards the flamelet library solution at a time scale associated with the slowest reaction. This combination of a flamelet solution and a chemical time scale helps to account for unsteady mixing effects. The turbulent sub-grid stresses are simulated using a one-equation, non-viscosity LES model called the dynamic structure model. The model uses a tensor coefficient determined by the dynamic procedure and the subgrid kinetic energy. The model has been expanded to include scalar mixing and scalar dissipation. A new model for the conditional scalar dissipation has been developed to better predict local extinction.
Technical Paper

Comparison of the Characteristic Time (CTC), Representative Interactive Flamelet (RIF), and Direct Integration with Detailed Chemistry Combustion Models against Optical Diagnostic Data for Multi-Mode Combustion in a Heavy-Duty DI Diesel Engine

2006-04-03
2006-01-0055
Three different approaches for modeling diesel engine combustion are compared against cylinder pressure, NOx emissions, high-speed soot luminosity imaging, and 2-color thermometry data from a heavy-duty DI diesel engine. A characteristic time combustion (KIVA-CTC) model, a representative interactive flamelet (KIVA-RIF) model, and direct integration using detailed chemistry (KIVA-CHEMKIN) were integrated into the same version of the KIVA-3v computer code. In this way, the computer code provides a common platform for comparing various combustion models. Five different engine operating strategies that are representative of several different combustion regimes were explored in the experiments and model simulations. Two of the strategies produce high-temperature combustion with different ignition delays, while the other three use dilution to achieve low-temperature combustion (LTC), with early, late, or multiple injections.
Technical Paper

Stoichiometric Combustion in a HSDI Diesel Engine to Allow Use of a Three-way Exhaust Catalyst

2006-04-03
2006-01-1148
The objectives of this study were 1) to evaluate the characteristics of rich diesel combustion near the stoichiometric operating condition, 2) to explore the possibility of stoichiometric operation of a diesel engine in order to allow use of a three-way exhaust after-treatment catalyst, and 3) to achieve practical operation ranges with acceptable fuel economy impacts. Boost pressure, EGR rate, intake air temperature, fuel mass injected, and injection timing variations were investigated to evaluate diesel stoichiometric combustion characteristics in a single-cylinder high-speed direct injection (HSDI) diesel engine. Stoichiometric operation in the Premixed Charge Compression Ignition (PCCI) combustion regime and standard diesel combustion were examined to investigate the characteristics of rich combustion. The results indicate that diesel stoichiometric operation can be achieved with minor fuel economy and soot impact.
Technical Paper

Theoretical Analysis of Waste Heat Recovery from an Internal Combustion Engine in a Hybrid Vehicle

2006-04-03
2006-01-1605
This paper presents a theoretical study of different strategies of waste heat recovery in an internal combustion engine, operating in a hybrid vehicle (spark ignition engine and electric motor). Many of the previous studies of energy recovery from waste heat focused on running thermodynamic cycles with the objective of supplying air-conditioning loads. There are two elements of this study that are different from previous studies: first, the end use of the recovered waste heat is the generation of electric power, and, second, the implementation of these heat recovery strategies takes place in a hybrid vehicle. The constant load conditions for the SI-engine in the hybrid vehicle are a potential advantage for the implementation of a heat recovery system. Three configurations of Rankine cycles were considered: a cycle running with the exhaust gases, a cycle with the engine coolant system, and a combined exhaust-engine coolant system.
Technical Paper

Measurements of Gas Temperature in a HCCI Engine Using a Fourier Domain Mode Locking Laser

2006-04-03
2006-01-1366
Initial measurements of water vapor temperature using a Fourier domain mode locking (FDML) laser were performed in a carefully controlled homogenous charge compression ignition engine with optical access. The gas temperature was inferred from water absorption spectra that were measured each 0.25 crank angle degrees (CAD) over a range of 150 CAD. Accuracy was tested in a well controlled shock tube experiment. This paper will validate the potential of this FDML laser in combustion applications.
Technical Paper

Effects of Engine Operating Parameters on near Stoichiometric Diesel Combustion Characteristics

2007-04-16
2007-01-0121
Stoichiometric combustion could enable a three-way catalyst to be used for treating NOx emissions of diesel engines, which is one of the most difficult species for diesel engines to meet future emission regulations. Previous study by Lee et al. [1] showed that diesel engines can operate with stoichiometric combustion successfully with only a minor impact on fuel consumption. Low NOx emission levels were another advantage of stoichiometric operation according to that study. In this study, the characteristics of stoichiometric diesel combustion were evaluated experimentally to improve fuel economy as well as exhaust emissions The effects of fuel injection pressure, boost pressure, swirl, intake air temperature, combustion regime (injection timing), and engine load (fuel mass injected) were assessed under stoichiometric conditions.
Technical Paper

The Effect of Intake Air Temperature, Compression Ratio and Coolant Temperature on the Start of Heat Release in an HCCI (Homogeneous Charge Compression Ignition) Engine

2001-12-01
2001-01-1880
In this paper, effect of intake air temperature, coolant temperature, and compression ratio on start of heat release (SOHR) in HCCI engines is investigated. The operational range with HCCI operation was determined experimentally using a CFR (Cooperative Fuels Research) engine with n-butane as the fuel. In-cylinder pressure was processed to evaluate SOHR. The effect of intake air and coolant temperature on SOHR increases as engine speed increases. In order to gain more insight into the combustion phenomena, SOHR was calculated using the theory of Livengood-Wu and compared with the experimental data. Dependence of SOHR on the equivalence ratio shows good correspondence between experiment and calculation. On the contrary, dependence on the intake air temperature and compression ratio shows poorer correspondence with predictions, especially under low engine speed. We interpret this as an indication of the importance of the active intermediate species that remain in the combustion chamber.
Technical Paper

Modeling Fuel Preparation and Stratified Combustion in a Gasoline Direct Injection Engine

1999-03-01
1999-01-0175
Fuel preparation and stratified combustion were studied for a conceptual gasoline Direct-Injection Spark-Ignition (GDI or DISI) engine by computer simulations. The primary interest was on the effects of different injector orientations and the effects of tumble ratio for late injection cases at a partial load operating condition. A modified KIVA-3V code that includes improved spray breakup and wall impingement and combustion models was used. A new ignition kernel model, called DPIK, was developed to describe the early flame growth process. The model uses Lagrangian marker particles to describe the flame positions. The computational results reveal that spray wall impingement is important and the fuel distribution is controlled by the spray momentum and the combustion chamber shape. The injector orientation significantly influences the fuel stratification pattern, which results in different combustion characteristics.
Technical Paper

Fuel Injection and Mean Swirl Effects on Combustion and Soot Formation in Heavy Duty Diesel Engines

2007-04-16
2007-01-0912
High-speed video imaging in a swirl-supported (Rs = 1.7), direct-injection heavy-duty diesel engine operated with moderate-to-high EGR rates reveals a distinct correlation between the spatial distribution of luminous soot and mean flow vorticity in the horizontal plane. The temporal behavior of the experimental images, as well as the results of multi-dimensional numerical simulations, show that this soot-vorticity correlation is caused by the presence of a greater amount of soot on the windward side of the jet. The simulations indicate that while flow swirl can influence pre-ignition mixing processes as well as post-combustion soot oxidation processes, interactions between the swirl and the heat release can also influence mixing processes. Without swirl, combustion-generated gas flows influence mixing on both sides of the jet equally. In the presence of swirl, the heat release occurs on the leeward side of the fuel sprays.
Technical Paper

Multi-Dimensional Modeling of Heat and Mass Transfer of Fuel Films Resulting from Impinging Sprays

1998-02-23
980132
To help account for fuel distribution during combustion in diesel engines, a fuel film model has been developed and implemented into the KIVA-II code [1]. Spray-wall interaction and spray-film interaction are also incorporated into the model. Modified wall functions for evaporating, wavy films are developed and tested. The model simulates thin fuel film flow on solid surfaces of arbitrary configuration. This is achieved by solving the continuity, momentum and energy equations for the two dimensional film that flows over a three dimensional surface. The major physical effects considered in the model include mass and momentum contributions to the film due to spray drop impingement, splashing effects, various shear forces, piston acceleration, dynamic pressure effects, and convective heat and mass transfer.
Technical Paper

A Computational Investigation into the Effects of Spray Targeting, Bowl Geometry and Swirl Ratio for Low-Temperature Combustion in a Heavy-Duty Diesel Engine

2007-04-16
2007-01-0119
A computational study was performed to evaluate the effects of bowl geometry, fuel spray targeting and swirl ratio under highly diluted, low-temperature combustion conditions in a heavy-duty diesel engine. This study is used to examine aspects of low-temperature combustion that are affected by mixing processes and offers insight into the effect these processes have on emissions formation and oxidation. The foundation for this exploratory study stems from a large data set which was generated using a genetic algorithm optimization methodology. The main results suggest that an optimal combination of spray targeting, swirl ratio and bowl geometry exist to simultaneously minimize emissions formation and improve soot and CO oxidation rates. Spray targeting was found to have a significant impact on the emissions and fuel consumption performance, and was furthermore found to be the most influential design parameter explored in this study.
Technical Paper

Assessment of Diesel Engine Size-Scaling Relationships

2007-04-16
2007-01-0127
Engine development is both time consuming and economically straining. Therefore, efforts are being made to optimize the research and development process for new engine technologies. The ability to apply information gained by studying an engine of one size/application to an engine of a completely different size/application would offer savings in both time and money in engine development. In this work, a computational study of diesel engine size-scaling relationships was performed to explore engine scaling parameters and the fundamental engine operating components that should be included in valid scaling arguments. Two scaling arguments were derived and tested: a simple, equal spray penetration scaling model and an extended, equal lift-off length scaling model. The simple scaling model is based on an equation for the conservation of mass and an equation for spray tip penetration developed by Hiroyasu et al. [1].
Technical Paper

Multidimensional Simulation of PCCI Combustion Using Gasoline and Dual-Fuel Direct Injection with Detailed Chemical Kinetics

2007-04-16
2007-01-0190
Homogeneous or partially premixed charge compression ignition combustion is considered to be an attractive alternative to traditional internal combustion engine operation because of its extremely low levels of pollutant emissions. However, since it is difficult to control the start of combustion timing, direct injection of fuel into the combustion chamber is often used for combustion phasing control, as well as charge preparation. In this paper, numerical simulations of compression ignition processes using gasoline fuel directly injected using a low pressure, hollow cone injector are presented. The multi-dimensional CFD code, KIVA3V, that incorporates various advanced sub-models and is coupled with CHEMKIN for modeling detailed chemistry, was used for the study. Simulation results of the spray behavior at various injection conditions were validated with available experimental data.
Technical Paper

Simulation of the Effect of Spatial Fuel Distribution Using a Linear-Eddy Model

2007-10-29
2007-01-4131
Prior HCCI optical engine experiments utilizing laser-induced fluorescence (LIF) measurements of stratified fuel-air mixtures have demonstrated the utility of probability density function (PDF) statistics for correlating mixture preparation with combustion. However, PDF statistics neglect all spatial details of in-cylinder fuel distribution. The current computational paper examines the effects of spatial fuel distribution on combustion using a novel combination of a 3-D CFD model with a 1-D linear-eddy model of turbulent mixing. In the simulations, the spatial coarseness of initial fuel distribution prior to the start of heat release is varied while keeping PDF statistics constant. Several cases are run, and as the initial mixture is made coarser, combustion phasing monotonically advances due to high local equivalence ratios that persist longer. The effect of turbulent mixing is more complex.
Technical Paper

Multidimensional Simulation of the Influence of Fuel Mixture Composition and Injection Timing in Gasoline-Diesel Dual-Fuel Applications

2008-04-14
2008-01-0031
Homogeneous charge compression ignition (HCCI) combustion is considered to be an attractive alternative to traditional internal combustion engine operation because of its extremely low levels of pollutant emissions. However, there are several difficulties that must be overcome for HCCI practical use, such as difficult ignition timing controllability. Indeed, too early or too late ignition can occur with obvious drawbacks. In addition, the increase in cyclic variation caused by the ignition timing uncertainty can lead to uneven engine operation. As a way to solve the combustion phasing control problem, dual-fuel combustion has been proposed. It consists of a diesel pilot injection used to ignite a pre-mixture of gasoline (or other high octane fuel) and air. Although dual-fuel combustion is an attractive way to achieve controllable HCCI operation, few studies are available to help the understanding of its in-cylinder combustion behavior.
Technical Paper

Product Selectivity During Regeneration of Lean NOx Trap Catalysts

2006-10-16
2006-01-3441
NOx reduction product speciation during regeneration of a fully formulated lean NOx trap catalyst has been investigated using a bench-scale flow reactor. NH3 and N2O were both observed during the regeneration phase of fast lean/rich cycles that simulated engine operation. Formation of both products increased with higher reductant concentrations and lower temperatures. Steady flow experiments were used to decouple the regeneration reactions from the NOx storage and release processes. This approach enabled a detailed investigation into the reactions that cause both formation and destruction of non-N2 reduction products. Pseudo-steady state experiments with simultaneous flow of NOx and reductant indicated that high concentrations of CO or H2 drive the reduction reactions toward NH3 formation, while mixtures that are stoichiometric for N2 formation favor N2. These experiments also showed that NH3 is readily oxidized by both NO and O2 over the LNT catalyst.
X