Refine Your Search

Topic

Author

Search Results

Journal Article

Use of Low-Pressure Direct-Injection for Reactivity Controlled Compression Ignition (RCCI) Light-Duty Engine Operation

2013-04-08
2013-01-1605
Reactivity-controlled compression ignition (RCCI) has been shown to be capable of providing improved engine efficiencies coupled with the benefit of low emissions via in-cylinder fuel blending. Much of the previous body of work has studied the benefits of RCCI operation using high injection pressures (e.g., 500 bar or greater) with common rail injection (CRI) hardware. However, low-pressure fueling technology is capable of providing significant cost savings. Due to the broad market adoption of gasoline direct injection (GDI) fueling systems, a market-type prototype GDI injector was selected for this study. Single-cylinder light-duty engine experiments were undertaken to examine the performance and emissions characteristics of the RCCI combustion strategy with low-pressure GDI technology and compared against high injection pressure RCCI operation. Gasoline and diesel were used as the low-reactivity and high-reactivity fuels, respectively.
Journal Article

Investigation of Spray Evaporation and Numerical Model Applied for Fuel-injection Small Engines

2008-09-09
2008-32-0064
The purpose of this research is to develop a prediction technique that can be used in the development of port fuel-injection (hereinafter called PFI) gasoline engines, especially for general purpose small utility engines. Utility engines have two contradictory desirable aspects: compactness and high-power at wide open throttle. Therefore, applying the port fuel injector to utility engines presents a unique intractableness that is different from application to automobiles or motorcycles. At the condition of wide open throttle, a large amount of fuel is required to output high power, and injected fuel is deposited as a wall film on the intake port wall. Despite the fuel rich condition, emissions are required to be kept under a certain level. Thus, it is significant to understand the wall film phenomenon and control film thickness in the intake ports.
Journal Article

A Transport Equation Residual Model Incorporating Refined G-Equation and Detailed Chemical Kinetics Combustion Models

2008-10-06
2008-01-2391
A transport equation residual model incorporating refined G-equation and detailed chemical kinetics combustion models has been developed and implemented in the ERC KIVA-3V release2 code for Gasoline Direct Injection (GDI) engine simulations for better predictions of flame propagation. In the transport equation residual model a fictitious species concept is introduced to account for the residual gases in the cylinder, which have a great effect on the laminar flame speed. The residual gases include CO2, H2O and N2 remaining from the previous engine cycle or introduced using EGR. This pseudo species is described by a transport equation. The transport equation residual model differentiates between CO2 and H2O from the previous engine cycle or EGR and that which is from the combustion products of the current engine cycle.
Journal Article

Heavy-Duty RCCI Operation Using Natural Gas and Diesel

2012-04-16
2012-01-0379
Many recent studies have shown that the Reactivity Controlled Compression Ignition (RCCI) combustion strategy can achieve high efficiency with low emissions. However, it has also been revealed that RCCI combustion is difficult at high loads due to its premixed nature. To operate at moderate to high loads with gasoline/diesel dual fuel, high amounts of EGR or an ultra low compression ratio have shown to be required. Considering that both of these approaches inherently lower thermodynamic efficiency, in this study natural gas was utilized as a replacement for gasoline as the low-reactivity fuel. Due to the lower reactivity (i.e., higher octane number) of natural gas compared to gasoline, it was hypothesized to be a better fuel for RCCI combustion, in which a large reactivity gradient between the two fuels is beneficial in controlling the maximum pressure rise rate.
Technical Paper

Combustion and Lift-Off Characteristics of n-Heptane Sprays Using Direct Numerical Simulations

2007-10-29
2007-01-4136
Fundamental simulations using DNS type procedures were used to investigate the ignition, combustion characteristics and the lift-off trends of a spatially evolving turbulent liquid fuel jet. In particular, the spatially evolving n-Heptane spray injected in a two-dimensional rectangular domain with an engine like environment was investigated. The computational results were compared to the experimental observations from an optical engine as reported in the literature. It was found that an initial fuel rich combustion downstream of the spray tip is followed by diffusion combustion. Investigations were also made to understand the effects of injection velocity, ambient temperature and the droplet radius on the lift-off length. For each of these parameters three different values in a given range were chosen. For both injection velocity and droplet radius, an increase resulted in a near linear increase in the lift-off length.
Technical Paper

Integration of Hybrid-Electric Strategy to Enhance Clean Snowmobile Performance

2006-11-13
2006-32-0048
The University of Wisconsin-Madison Snowmobile Team designed and constructed a hybrid-electric snowmobile for the 2005 Society of Automotive Engineers' Clean Snowmobile Challenge. Built on a 2003 cross-country touring chassis, this machine features a 784 cc fuel-injected four-stroke engine in parallel with a 48 V electric golf cart motor. The 12 kg electric motor increases powertrain torque up to 25% during acceleration and recharges the snowmobile's battery pack during steady-state operation. Air pollution from the gasoline engine is reduced to levels far below current best available technology in the snowmobile industry. The four-stroke engine's closed-loop EFI system maintains stoichiometric combustion while dual three-way catalysts reduce NOx, HC and CO emissions by up to 94% from stock. In addition to the use of three way catalysts, the fuel injection strategy has been modified to further reduce engine emissions from the levels measured in the CSC 2004 competition.
Technical Paper

Global Optimization of a Two-Pulse Fuel Injection Strategy for a Diesel Engine Using Interpolation and a Gradient-Based Method

2007-04-16
2007-01-0248
A global optimization method has been developed for an engine simulation code and utilized in the search of optimal fuel injection strategies. This method uses a Lagrange interpolation function which interpolates engine output data generated at the vertices and the intermediate points of the input parameters. This interpolation function is then used to find a global minimum over the entire parameter set, which in turn becomes the starting point of a CFD-based optimization. The CFD optimization is based on a steepest descent method with an adaptive cost function, where the line searches are performed with a fast-converging backtracking algorithm. The adaptive cost function is based on the penalty method, where the penalty coefficient is increased after every line search. The parameter space is normalized and, thus, the optimization occurs over the unit cube in higher-dimensional space.
Technical Paper

Measurement of Diesel Spray Impingement and Fuel Film Characteristics Using Refractive Index Matching Method

2007-04-16
2007-01-0485
The fuel film thickness resulting from diesel fuel spray impingement was measured in a chamber at conditions representative of early injection timings used for low temperature diesel combustion. The adhered fuel volume and the radial distribution of the film thickness are presented. Fuel was injected normal to the impingement surface at ambient temperatures of 353 K, 426 K and 500 K, with densities of 10 kg/m3 and 25 kg/m3. Two injectors, with nozzle diameters of 100 μm and 120 μm, were investigated. The results show that the fuel film volume was strongly affected by the ambient temperature, but was minimally affected by the ambient density. The peak fuel film thickness and the film radius were found to increase with decreased temperature. The fuel film was found to be circular in shape, with an inner region of nearly constant thickness. The major difference observed with temperature was a decrease in the radial extent of the film.
Technical Paper

Optimization of an Asynchronous Fuel Injection System in Diesel Engines by Means of a Micro-Genetic Algorithm and an Adaptive Gradient Method

2008-04-14
2008-01-0925
Optimal fuel injection strategies are obtained with a micro-genetic algorithm and an adaptive gradient method for a nonroad, medium-speed DI diesel engine equipped with a multi-orifice, asynchronous fuel injection system. The gradient optimization utilizes a fast-converging backtracking algorithm and an adaptive cost function which is based on the penalty method, where the penalty coefficient is increased after every line search. The micro-genetic algorithm uses parameter combinations of the best two individuals in each generation until a local convergence is achieved, and then generates a random population to continue the global search. The optimizations have been performed for a two pulse fuel injection strategy where the optimization parameters are the injection timings and the nozzle orifice diameters.
Technical Paper

Effects of EGR Components Along with Temperature and Equivalence Ratio on the Combustion of n-Heptane Fuel

2008-04-14
2008-01-0951
Fundamental simulations in a quiescent cell under adiabatic conditions were made to understand the effect of temperature, equivalence ratio and the components of the recirculated exhaust gas, viz., CO2 and H2O, on the combustion of n-Heptane. Simulations were made in single phase in which evaporated n-Heptane was uniformly distributed in the domain. Computations were made for two different temperatures and four different EGR levels. CO2 or H2O or N2was used as EGR. It was found that the initiation of the main combustion process was primarily determined by two competing factors, i.e., the amount of initial OH concentration in the domain and the specific heat of the mixture. Further, initial OH concentration can be controlled by the manipulating the ambient temperature in the domain, and the specific heat capacity of the mixture via the mixture composition. In addition to these, the pre combustion and the subsequent post combustion can also be controlled via the equivalence ratio.
Technical Paper

Exploring the Limits of Improving DI Diesel Emissions By Increasing In-Cylinder Mixing

1998-10-19
982677
In the current investigation, the authors identified conditions under which increased in-cylinder turbulence can be used to improve diesel emissions. Two separate regimes of engine operation were identified; one in which combustion was constrained by mixing and one in which it was not. These regimes were dubbed under-mixed and over-mixed, respectively. It was found that increasing mixing in the former regime had a profound effect on soot emission. Fuel injection characteristics were found to be extremely important in determining the point at which mixing became inadequate. In addition, the ratio of the fuel injection momentum flux relative to that of the gas injection was found to be important in determining how increasing mixing would effect soot emissions.
Technical Paper

Effect of Gas Density and the Number of Injector Holes on the Air Flow Surrounding Non-Evaporating Transient Diesel Sprays

2001-03-05
2001-01-0532
The effect of ambient gas density and the number of injector holes on the characteristics of airflow surrounding non-evaporating transient diesel sprays inside a constant volume chamber were investigated using a 6-hole injector. Particle Image Velocimetry (PIV) was used to measure the gas velocities surrounding a spray plume as a function of space and time. A conical control surface surrounding the spray plume was chosen as a representative side entrainment surface. The positive normal velocities across the control surface of single-hole injection sprays were higher than those of 6-hole injection sprays. An abrupt increase in velocities tangential to the control surface near the chamber wall suggests that the recirculation of surrounding gas is accelerated by spray wall impingement.
Technical Paper

Investigation of Augmented Mixing Effects on Direct-Injection Stratified Combustion

2001-09-24
2001-01-3670
The effects of augmented mixing through the use of an auxiliary gas injection (AGI) were investigated in a direct-injection gasoline engine operated at a 22:1 overall air-fuel ratio, but with retarded injection timing such that the combustion was occurring in a locally rich mixture as evident by the elevated CO emissions. Two AGI gas compositions, nitrogen and air, were utilized, the gas supply temperature was ambient, and a wide range of AGI timings were investigated. The injected mass was less than 10% of the total chamber mass. The injection of nitrogen during the latter portion of the heat release phase resulted in a 25% reduction in the CO emissions. This reduction is considered to be the result of the increased mixing rate of the rich combustion products with the available excess air during a time when the temperatures are high enough to promote rapid oxidation.
Technical Paper

Experimental Investigation of Direct Injection-Gasoline for Premixed Compression Ignited Combustion Phasing Control

2002-03-04
2002-01-0418
A direct injection-gasoline (DI-G) system was applied to a heavy-duty diesel-type engine to study the effects of charge stratification on the performance of premixed compression ignited combustion. The effects of the fuel injection parameters on combustion phasing were of primary interest. The simultaneous effects of the fuel stratification on Unburned Hydrocarbon (UHC), Oxides of Nitrogen (NOx), Carbon Monoxide (CO), and smoke emissions were also measured. Engine tests were conducted with altered injection parameters covering the entire load range of normally aspirated Homogeneous Charge Compression Ignited (HCCI) combustion. Combustion phasing tests were also conducted at several engine speeds to evaluate its effects on a fuel stratification strategy.
Technical Paper

Fuel Injection Spray and Combustion Chamber Wall Impingement in Large Bore Diesel Engines

2002-03-04
2002-01-0496
The Diesel engine is a commercially attractive powerplant, however it is noted to have significant specific output of harmful emissions under some operating conditions. One possible solution for reduction of the harmful emissions from the Diesel engine is greater control over the fuel injection event. To gain further understanding of liquid phase Diesel fuel injection spray characteristics, a 2.44 liter displacement, 4 stroke engine was modified for optical access and fitted with a Caterpillar Hydraulic Electronic Unit Injection (HEUI) system. The data collection system consisted of a high repetition rate diode pumped Nd:YAG laser frequency doubled to 532 nm for visible illumination and a Kodak High Speed Motion Analyzer for recording fuel spray images. The engine was motored under various inlet conditions to create an engine combustion chamber environment typical of those found in commercial engines of similar per cylinder displacement class.
Technical Paper

Air Flow Characteristics Surrounding Evaporating Transient Diesel Sprays

2002-03-04
2002-01-0499
Airflow characteristics surrounding evaporating transient diesel sprays inside a constant volume chamber under temperatures around 1100 K were investigated using a 6-hole injector and a single-hole injector. Particle Image Velocimetry (PIV) was used to measure the gas velocities surrounding a spray plume as a function of space and time. A conical control surface surrounding the spray plume was chosen as a representative side entrainment surface. The normal velocities crossing the control surface toward the spray plume for single-hole injection sprays were higher than those of 6-hole injection sprays. The velocities tangential to the control surface toward the injector tip for the single-hole injection sprays were lower than those of 6-hole injection sprays. An abrupt increase in tangential velocities near the chamber wall suggests that the recirculation of surrounding gas was accelerated by the spray wall impingement, both for non-evaporating and evaporating sprays.
Technical Paper

Effect of Injection Timing on Detailed Chemical Composition and Particulate Size Distributions of Diesel Exhaust

2003-05-19
2003-01-1794
An experimental study was carried out to investigate the effects of fuel injection timing on detailed chemical composition and size distributions of diesel particulate matter (PM) and regulated gaseous emissions in a modern heavy-duty D.I. diesel engine. These measurements were made for two different diesel fuels: No. 2 diesel (Fuel A) and ultra low sulfur diesel (Fuel B). A single-cylinder 2.3-liter D.I. diesel engine equipped with an electronically controlled unit injection system was used in the experiments. PM measurements were made with an enhanced full-dilution tunnel system at the Engine Research Center (ERC) of the University of Wisconsin-Madison (UW-Madison) [1, 2]. The engine was run under 2 selected modes (25% and 75% loads at 1200 rpm) of the California Air Resources Board (CARB) 8-mode test cycle.
Technical Paper

Modeling Diesel Engine Spray Vaporization and Combustion

1992-02-01
920579
Diesel engine in-cylinder combustion processes have been studied using computational models with particular attention to spray development, vaporization, fuel/air mixture formation and combustion. A thermodynamic zero-dimensional cycle analysis program was used to determine initial conditions for the multidimensional calculations. A modified version of the time-dependent, three-dimensional computational fluid dynamics code KIVA-II was used for the computations, with a detailed treatment for the spray calculations and a simplified model for combustion. The calculations were used to obtain an understanding of the potential predictive capabilities of the models. It was found that there is a strong sensitivity of the results to numerical grid resolution. With proper grid resolution, the calculations were found to reproduce experimental data for non- vaporizing and vaporizing sprays. However, for vaporizing sprays with combustion, extremely fine grids are needed.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

A Quasi-Dimensional NOx Emission Model for Spark Ignition Direct Injection (SIDI) Gasoline Engines

2013-04-08
2013-01-1311
A fundamentally based quasi-dimensional NOx emission model for spark ignition direct injection (SIDI) gasoline engines was developed. The NOx model consists of a chemical mechanism and three sub-models. The classical extended Zeldovich mechanism and N₂O pathway for NOx formation mechanism were employed as the chemical mechanism in the model. A characteristic time model for the radical species H, O and OH was incorporated to account for non-equilibrium of radical species during combustion. A model of homogeneity which correlates fundamental dimensionless numbers and mixing time was developed to model the air-fuel mixing and inhomogeneity of the charge. Since temperature has a dominant effect on NOx emission, a flame temperature correlation was developed to model the flame temperature during the combustion for NOx calculation. Measured NOx emission data from a single-cylinder SIDI research engine at different operating conditions was used to validate the NOx model.
X