Refine Your Search

Topic

Author

Search Results

Technical Paper

Optimizing the University of Wisconsin's Parallel Hybrid-Electric Aluminum Intensive Vehicle

2000-03-06
2000-01-0593
The University of Wisconsin - Madison FutureCar Team has designed and built a lightweight, charge sustaining, parallel hybrid-electric vehicle for entry into the 1999 FutureCar Challenge. The base vehicle is a 1994 Mercury Sable Aluminum Intensive Vehicle (AIV), nicknamed the “Aluminum Cow,” weighing 1275 kg. The vehicle utilizes a high efficiency, Ford 1.8 liter, turbo-charged, direct-injection compression ignition engine. The goal is to achieve a combined FTP cycle fuel economy of 23.9 km/L (56 mpg) with California ULEV emissions levels while maintaining the full passenger/cargo room, appearance, and feel of a full-size car. Strategies to reduce the overall vehicle weight are discussed in detail. Dynamometer and experimental testing is used to verify performance gains.
Technical Paper

Experimental and Numerical Studies of High Pressure Multiple Injection Sprays

1996-02-01
960861
Characterization of high pressure diesel sprays has been performed both experimentally and numerically. The experimental study was conducted using a fuel injection system which has a capability of producing multiple injection sprays. The fuel sprays were injected from a multi-hole nozzle into a pressurized cylindrical chamber with optical windows. In order to investigate the effects of a multiple injection strategy on spray characteristics, a double injection spray with the mass evenly distributed between the first and second sprays, and a 1 millisecond dwell between sprays was compared with a single injection spray. Both single and double injection cases had nominally the same injection pressure, injection delivery, and ambient gas density. Transient spray tip penetration lengths and spray angles were obtained from high speed photographic spray images. The spray droplet sizes were derived from the images by using a light extinction method.
Technical Paper

Effect of Injector Nozzle Hole Size and Number on Spray Characteristics and the Performance of a Heavy Duty D.I. Diesel Engine

1996-10-01
962002
An engine emissions and performance study was conducted in conjunction with a series of experiments using a constant volume cold spray chamber. The purpose of the study was to explore the effects of number of holes and hole size on the emissions and performance of a direct injection heavy duty diesel engine. The spray experiments provide insight into the spray parameters and their role in the engine's combustion processes. The fuel system used for both the engine and spray chamber experiments was an electronically controlled, common rail injector. The injector nozzle hole size and number combinations used in the experiments included 225X8 (225 gm diameter holes with 8 holes in the nozzle), 260X6, 260X8, and 30OX6. The engine tests were conducted on an instrumented single cylinder version of the Caterpillar 3400 series heavy duty diesel engine. Data were taken with the engine running at 1600 RPM, 75% load.
Technical Paper

Multidimensional Modeling of Spray Atomization and Air-Fuel Mixing in a Direct-Injection Spark-Ignition Engine

1997-02-24
970884
A numerical study of air-fuel mixing in a direct-injection spark-ignition engine was carried out. In this paper, the numerical models are described and grid generation methods to represent a realistic port-valve-chamber geometry is discussed. To model a vaporizing hollow-cone spray resulting from an automotive pressure-swirl injector, a newly developed sheet spray atomization model was used to compute the processes of disintegration of the liquid sheet and breakup of the subsequent drops. Computations were performed of a particular 4-valve pent-roof engine configuration in which the intake process and an early fuel injection scheme were considered. After an analysis of the intake-generated flow structures in this engine configuration, the spray behavior and the spatial and temporal evolution of fuel liquid and vapor phases are characterized.
Technical Paper

The Development of Vehicular Powertrain System Modeling Methodologies: Philosphy and Implementation

1997-02-24
971089
Simulation is a useful tool which can significantly reduce resources invested during product development. Vehicle manufacturers are using simulations to aid in the evaluation of designs and components, including powertrain systems and controllers. These simulations can be made more useful by addressing issues such as flexibility, modularity, and causality. These issues and other aspects involved in the development and use of powertrain system simulations are discussed in this paper, and a case study of a powertrain system model developed in the PCRL using methodologies based on considerations of such issues is presented.
Technical Paper

In-Cylinder Measurement and Modeling of Liquid Fuel Spray Penetration in a Heavy-Duty Diesel Engine

1997-05-01
971591
Liquid fuel penetration was measured using an endoscopebased imaging system in an operating single-cylinder heavy-duty direct injection diesel engine with simulated turbocharging. Sprays were imaged via the elastic backscatter technique without significantly altering the engine geometry. Light loads (or pilot injections) were also studied because the spray breakup, mixing and vaporization processes can be isolated since they are less influenced by heat feedback from the flame than in a full injection case. The pilot injections included cases with three different fuel amounts (10%, 15% and 20% of the fuel injected in the baseline case, i.e., 75% load and 1600 rev/min) with different start-of-injection timings. Maximum liquid penetration lengths beyond which the fuel is completely vaporized were observed for all the cases studied. The maximum lengths varied from 23 mm to 28 mm for the different start-of-injection timings.
Technical Paper

A Numerical Study of Cavitating Flow Through Various Nozzle Shapes

1997-05-01
971597
The flow through diesel fuel injector nozzles is important because of the effects on the spray and the atomization process. Modeling this nozzle flow is complicated by the presence of cavitation inside the nozzles. This investigation uses a two-dimensional, two-phase, transient model of cavitating nozzle flow to observe the individual effects of several nozzle parameters. The injection pressure is varied, as well as several geometric parameters. Results are presented for a range of rounded inlets, from r/D of 1/40 to 1/4. Similarly, results for a range of L/D from 2 to 8 are presented. Finally, the angle of the corner is varied from 50° to 150°. An axisymmetric injector tip is also simulated in order to observe the effects of upstream geometry on the nozzle flow. The injector tip calculations show that the upstream geometry has a small influence on the nozzle flow. The results demonstrate the model's ability to predict cavitating nozzle flow in several different geometries.
Technical Paper

Development of Novel Direct-injection Diesel Engine Combustion Chamber Designs Using Computational Fluid Dynamics

1997-05-01
971594
A, three-dimensional CFD code, based on the KIVA code, is used to explore alternatives to conventional DI diesel engine designs for reducing NOx and soot emissions without sacrificing engine performance. The effects of combustion chamber design and fuel spray orientation are investigated using a new proposed GAMMA engine concept, and two new multiple injector combustion system (MICS) designs which utilize multiple injectors to increase gas motion and enhance fuel/air mixing in the combustion chamber. From these computational studies, it is found that both soot and nitrous oxide emissions can be significantly reduced without the need for more conventional emission control strategies such as EGR or ultra high injection pressure. The results suggest that CFD models can be a useful tool not only for understanding combustion and emissions production, but also for investigating new design concepts.
Technical Paper

Modeling of Soot Formation During DI Diesel Combustion Using a Multi-Step Phenomenological Model

1998-10-19
982463
Predictive models of soot formation during Diesel combustion are of great practical interest, particularly in light of newly proposed strict regulations on particulate emissions. A modified version of the phenomenological model of soot formation developed previously has been implemented in KIVA-II CFD code. The model includes major generic processes involved in soot formation during combustion, i.e., formation of soot precursors, formation of surface growth species, soot particle nucleation, coagulation, surface growth and oxidation. The formulation of the model within the KIVA-II is fully coupled with the mass and energy balances in the system. The model performance has been tested by comparison with the results of optical in-cylinder soot measurements in a single cylinder Cummins NH Diesel engine. The predicted soot volume fraction, number density and particle size agree reasonably well with the experimental data.
Technical Paper

Modeling the Effects of Valve Lift Profile on Intake Flow and Emissions Behavior in a DI Diesel Engine

1995-10-01
952430
Variations in the in cylinder flow field which result from differences in the intake flow are known to have important effects on the performance and emissions behavior of diesel engines. The intake flow and combustion in a heavy duty DI diesel engine with a dual valve port have been simulated using the computational fluid dynamics code KIVA-3. Variation of the in-cylinder flow field has been achieved by varying the intake valve timing. Variations in the in-cylinder flow, including a range of length scales, degrees of inhomogeneity in a number of scalar and vector quantities, and the persistence of various flow structures, are compared, and their significance to combustion and emissions parameters are assessed. The interaction of fuel spray parameters, particularly spray-wall interaction with structures present in the flow field are evaluated.
Technical Paper

Multidimensional Modeling of Fuel Composition Effects on Combustion and Cold-Starting in Diesel Engines

1995-10-01
952425
A computer model developed for describing multicomponent fuel vaporization, and ignition in diesel engines has been applied in this study to understand cold-starting and the parameters that are of significant influence on this phenomena. This research utilizes recent improvements in spray vaporization and combustion models that have been implemented in the KIVA-II CFD code. Typical engine fuels are blends of various fuels species, i.e., multicomponent. Thus, the original single component fuel vaporization model in KIVA-II was replaced by a multicomponent fuel vaporization model (based on the model suggested by Jin and Borman). The modelhas been extended to model diesel sprays under typical diesel conditions, including the effect of fuel cetane number variation. Necessary modifications were carried out in the atomization and collision sub-models. The ignition model was also modified to account for fuel composition effects by modifying the Shell ignition model.
Technical Paper

Progress Towards Diesel Combustion Modeling

1995-10-01
952429
Progress on the development and validation of a CFD model for diesel engine combustion and flow is described. A modified version of the KIVA code is used for the computations, with improved submodels for liquid breakup, drop distortion and drag, spray/wall impingement with rebounding, sliding and breaking-up drops, wall heat transfer with unsteadiness and compressibility, multistep kinetics ignition and laminar-turbulent characteristic time combustion models, Zeldovich NOx formation, and soot formation with Nagle Strickland-Constable oxidation. The code also considers piston-cylinder-liner crevice flows and allows computations of the intake flow process in the realistic engine geometry with two moving intake valves. Significant progress has been made using a modified RNG k-ε turbulence model, and a multicomponent fuel vaporization model and a flamelet combustion model have been implemented.
Technical Paper

Modeling the Use of Air-Injection for Emissions Reduction in a Direct-Injected Diesel Engine

1995-10-01
952359
This study investigates the effect of air-injection during the late combustion period produced by an air-cell on emissions from a direct injected diesel engine. The engine considered is a Caterpillar 3401 test engine which was modeled with an air-cell included as part of the piston geometry. A version of the KIVA-II code with updated submodels for diesel combustion and emissions was modified to allow for geometries with walls interior to the domain. This modified version of KIVA-II was then used to model an air-cell equipped diesel engine for four different air-cell configurations. Of the four air-cell configurations simulated, one proved successful in reducing the predicted engine emissions by more than a factor of two while simultaneously reducing NOx by a slight amount, thus moving the engine off its particulate-NOx tradeoff curve defined by varying the fuel injection timing.
Technical Paper

An Application of the Coherent Flamelet Model to Diesel Engine Combustion

1995-02-01
950281
A turbulent combustion model based on the coherent flamelet model was developed in this study and applied to diesel engines. The combustion was modeled in three distinct but overlapping phases: low temperature ignition kinetics using the Shell ignition model, high temperature premixed burn using a single step Arrhenius equation, and the flamelet based diffusion burn. Two criteria for transitions based on temperature, heat release rate, and the local Damköhler number were developed for the progression of combustion between each of these phases. The model was implemented into the computational computer code KIVA-II. Previous experiments on a Caterpillar model E 300, # 1Y0540 engine, a Tacom LABECO research engine, and a single cylinder version of a Cummins N14 production engine were used to validate the cylinder averaged predictions of the model.
Technical Paper

The Development and Application of a Diesel Ignition and Combustion Model for Multidimensional Engine Simulation

1995-02-01
950278
An integrated numerical model has been developed for diesel engine computations based on the KIVA-II code. The model incorporates a modified RNG k-ε, turbulence model, a ‘wave’ breakup spray model, the Shell ignition model, the laminar-and-turbulent characteristic-time combustion model, a crevice flow model, a spray/wall impingement model that includes rebounding and breaking-up drops, and other improved submodels in the KIVA code. The model was validated and applied to model successfully different types of diesel engines under various operating conditions. These engines include a Caterpillar engine with different injection pressures at different injection timings, a small Tacom engine at different loads, and a Cummins engine modified by Sandia for optical experiments. Good levels of agreement in cylinder pressures and heat release rate data were obtained using the same computer model for all engine cases.
Technical Paper

Modeling the Effects of Intake Generated Turbulence and Resolved Flow Structures on Combustion in DI Diesel Engines

1996-02-01
960634
Previous studies have shown the importance of the in-cylinder flow field which exists prior to fuel injection on performance and emissions behavior of direct injected (DI) diesel engines. Key parameters in the flow field are the turbulence level and the resolved structures, such as swirl and tumble flow. These characteristics are known to have significant effects on the fuel vaporization, droplet break-up, and fuel-air mixing. The relative importance of these effects is investigated through simulation of injection into a stirred, heated, constant volume combustion bomb, using the computational fluid dynamics codes KIVA-3 [9] and KIVA-II [10]. Initial conditions for these simulations are based on in-cylinder conditions which exist in a heavy duty DI diesel engine immediately prior to fuel injection.
Technical Paper

Modeling Fuel Film Formation and Wall Interaction in Diesel Engines

1996-02-01
960628
A fuel film model has been developed and implemented into the KIVA-II code to help account for fuel distribution during combustion in diesel engines. Spray-wall interaction and spray-film interaction are also incorporated into the model. The model simulates thin fuel film flow on solid surfaces of arbitrary configuration. This is achieved by solving the continuity and momentum equations for the two dimensional film that flows over a three dimensional surface. The major physical effects considered in the model include mass and momentum contributions to the film due to spray drop impingement, splashing effects, various shear forces, piston acceleration, and dynamic pressure effects. In order to adequately represent the drop interaction process, impingement regimes and post-impingement behavior have been modeled using experimental data and mass, momentum and energy conservation constraints. The regimes modeled for spray-film interaction are stick, rebound, spread, and splash.
Technical Paper

Measurement and Modeling of Thermal Flows in an Air-Cooled Engine

1996-08-01
961731
Control of the flow of thermal energy in an air-cooled engine is important to the overall performance of the engine because of potential effects on engine performance, durability, design, and emissions. A methodology is being developed for the assessment of thermal flows in air-cooled engines, which includes the use of cycle simulation and in-cylinder heat flux measurements. The mechanism for the combination of cycle simulation, the measurement of in-cylinder heat flux and wall temperatures, and comparison of predicted and measured heat flux in the methodology is presented. The methodology consists of both simulation and experimental phases. To begin, a one-dimensional gas dynamics code (WAVE) has been used in conjunction with a detailed in-cylinder flow and combustion model (IRIS) in order to simulate engine operation in a variety of operating conditions. The methods used to apply the model to the air-cooled engine case are described in detail.
Technical Paper

Engine Control Strategy for a Series Hybrid Electric Vehicle Incorporating Load-Leveling and Computer Controlled Energy Management

1996-02-01
960230
This paper identifies important engine, alternator and battery characteristics needed for determining an appropriate engine control strategy for a series hybrid electric vehicle Examination of these characteristics indicates that a load-leveling strategy applied to the small engine will provide better fuel economy than a power-tracking scheme An automatic energy management strategy is devised whereby a computer controller determines the engine-alternator turn-on and turn-off conditions and controls the engine-alternator autonomously Battery state of charge is determined from battery voltage and current measurements Experimental results of the system's performance in a test vehicle during city driving are presented
Technical Paper

Hardware Implementation Details and Test Results for a High-Bandwith, Hydrostatic Transient Engine Dynamometer System

1997-02-24
970025
Transient operation of automobile engines is known to contribute significantly to regulated exhaust emissions, and is also an area of drivability concerns. Furthermore, many on-board diagnostic algorithms do not perform well during transient operation and are often temporarily disabled to avoid problems. The inability to quickly and repeatedly test engines during transient conditions in a laboratory setting limits researchers and development engineers ability to produce more effective and robust algorithms to lower vehicle emissions. To meet this need, members of the Powertrain Control Research Laboratory (PCRL) at the University of Wisconsin-Madison have developed a high-bandwidth, hydrostatic dynamometer system that will enable researchers to explore transient characteristics of engines and powertrains in the laboratory.
X