Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

CO Emission Model for an Integrated Diesel Engine, Emissions, and Exhaust Aftertreatment System Level Model

2009-04-20
2009-01-1511
A kinetic carbon monoxide (CO) emission model is developed to simulate engine out CO emissions for conventional diesel combustion. The model also incorporates physics governing CO emissions for low temperature combustion (LTC). The emission model will be used in an integrated system level model to simulate the operation and interaction of conventional and low temperature diesel combustion with aftertreatment devices. The Integrated System Model consists of component models for the diesel engine, engine-out emissions (such as NOx and Particulate Matter), and aftertreatment devices (such as DOC and DPF). The addition of CO emissions model will enhance the capability of the Integrated System Model to predict major emission species, especially for low temperature combustion. In this work a CO emission model is developed based on a two-step global kinetic mechanism [8].
Journal Article

Effect of Mesh Structure in the KIVA-4 Code with a Less Mesh Dependent Spray Model for DI Diesel Engine Simulations

2009-06-15
2009-01-1937
Two different types of mesh used for diesel combustion with the KIVA-4 code are compared. One is a well established conventional KIVA-3 type polar mesh. The other is a non-polar mesh with uniform size throughout the piston bowl so as to reduce the number of cells and to improve the quality of the cell shapes around the cylinder axis which can contain many fuel droplets that affect prediction accuracy and the computational time. This mesh is specialized for the KIVA-4 code which employs an unstructured mesh. To prevent dramatic changes in spray penetration caused by the difference in cell size between the two types of mesh, a recently developed spray model which reduces mesh dependency of the droplet behavior has been implemented. For the ignition and combustion models, the Shell model and characteristic time combustion (CTC) model are employed.
Journal Article

Comparative Study on Various Methods for Measuring Engine Particulate Matter Emissions

2008-06-23
2008-01-1748
Studies have shown that there are a significant number of chemical species present in engine exhaust particulate matter emissions. Additionally, the majority of current world-wide regulatory methods for measuring engine particulate emissions are gravimetrically based. As modern engines considerably reduce particulate mass emissions, these methods become less stable and begin to display higher levels of measurement uncertainty. In this study, a characterization of mass emissions from three heavy-duty diesel engines, with a range of particulate emission levels, was made in order to gain a better understanding of the variability and uncertainty associated with common mass measurement methods, as well as how well these methods compare with each other. Two gravimetric mass measurement methods and a reconstructed mass method were analyzed as part of the present study.
Journal Article

Pathline Analysis of Full-cycle Four-stroke HCCI Engine Combustion Using CFD and Multi-Zone Modeling

2008-04-14
2008-01-0048
This paper investigates flow and combustion in a full-cycle simulation of a four-stroke, three-valve HCCI engine by visualizing the flow with pathlines. Pathlines trace massless particles in a transient flow field. In addition to visualization, pathlines are used here to trace the history, or evolution, of flow fields and species. In this study evolution is followed from the intake port through combustion. Pathline analysis follows packets of intake charge in time and space from induction through combustion. The local scalar fields traversed by the individual packets in terms of velocity magnitude, turbulence, species concentration and temperatures are extracted from the simulation results. The results show how the intake event establishes local chemical and thermal environments in-cylinder and how the species respond (chemically react) to the local field.
Journal Article

Detailed Effects of a Diesel Particulate Filter on the Reduction of Chemical Species Emissions

2008-04-14
2008-01-0333
Diesel particulate filters are designed to reduce the mass emissions of diesel particulate matter and have been proven to be effective in this respect. Not much is known, however, about their effects on other unregulated chemical species. This study utilized source dilution sampling techniques to evaluate the effects of a catalyzed diesel particulate filter on a wide spectrum of chemical emissions from a heavy-duty diesel engine. The species analyzed included both criteria and unregulated compounds such as particulate matter (PM), carbon monoxide (CO), hydrocarbons (HC), inorganic ions, trace metallic compounds, elemental and organic carbon (EC and OC), polycyclic aromatic hydrocarbons (PAHs), and other organic compounds. Results showed a significant reduction for the emissions of PM mass, CO, HC, metals, EC, OC, and PAHs.
Journal Article

Ring Pack Crevice Effects on the Hydrocarbon Emissions from an Air-Cooled Utility Engine

2008-09-09
2008-32-0004
The effect of the ring pack storage mechanism on the hydrocarbon (HC) emissions from an air-cooled utility engine has been studied using a simplified ring pack model. Tests were performed for a range of engine load, two engine speeds, varied air-fuel ratio and with a fixed ignition timing using a homogeneous, pre-vaporized fuel mixture system. The integrated mass of HC leaving the crevices from the end of combustion (the crank angle that the cumulative burn fraction reached 90%) to exhaust valve closing was taken to represent the potential contribution of the ring pack to the overall HC emissions; post-oxidation in the cylinder will consume some of this mass. Time-resolved exhaust HC concentration measurements were also performed, and the instantaneous exhaust HC mass flow rate was determined using the measured exhaust and cylinder pressure.
Journal Article

Improvements to Combustion Models for Modeling Spark-Ignition Engines Using the G-equation and Detailed Chemical Kinetics

2008-06-23
2008-01-1634
Improvements to combustion models for modeling spark ignition engines using the G-equation flame propagation model and detailed chemical kinetics have been performed. The improvements include revision of a PRF chemistry mechanism, precise calculation of “primary heat release” based on the sub-grid scale unburned/burnt volumes of flame-containing cells, modeling flame front quenching in highly stratified mixtures, introduction of a Damkohler model for assessing the combustion regime of flame-containing cells, and a better method of modeling the effects of the local residual value on the burning velocity. The validation of the revised PRF mechanism shows that the calculated ignition delay matches shock tube data very well. The improvements to the “primary heat release” model based on the cell unburned/burnt volumes more precisely consider the chemical kinetics heat release in unburned regions, and thus are thought to be physically reasonable.
Journal Article

High Resolution Scalar Dissipation Measurements in an IC Engine

2009-04-20
2009-01-0662
The ability to make fully resolved turbulent scalar field measurements has been demonstrated in an internal combustion engine using one-dimensional fluorobenzene fluorescence measurements. Data were acquired during the intake stroke in a motored engine that had been modified such that each intake valve was fed independently, and one of the two intake streams was seeded with the fluorescent tracer. The scalar energy spectra displayed a significant inertial subrange that had a −5/3 wavenumber power dependence. The scalar dissipation spectra were found to extend in the high-wavenumber regime, to where the magnitude was more than two decades below the peak value, which indicates that for all practical purposes the measurements faithfully represent all of the scalar dissipation in the flow.
Journal Article

Heavy-Duty RCCI Operation Using Natural Gas and Diesel

2012-04-16
2012-01-0379
Many recent studies have shown that the Reactivity Controlled Compression Ignition (RCCI) combustion strategy can achieve high efficiency with low emissions. However, it has also been revealed that RCCI combustion is difficult at high loads due to its premixed nature. To operate at moderate to high loads with gasoline/diesel dual fuel, high amounts of EGR or an ultra low compression ratio have shown to be required. Considering that both of these approaches inherently lower thermodynamic efficiency, in this study natural gas was utilized as a replacement for gasoline as the low-reactivity fuel. Due to the lower reactivity (i.e., higher octane number) of natural gas compared to gasoline, it was hypothesized to be a better fuel for RCCI combustion, in which a large reactivity gradient between the two fuels is beneficial in controlling the maximum pressure rise rate.
Journal Article

Replicating Instantaneous Cylinder Mass Flow Rate with Parallel Continuously and Discretely Actuating Intake Plenum Valves

2012-04-16
2012-01-0417
The focus of this paper is to discuss the modeling and control of intake plenum pressure on the Powertrain Control Research Laboratory's (PCRL) Single-Cylinder Engine (SCE) transient test system using a patented device known as the Intake Air Simulator (IAS), which dynamically controls the intake plenum pressure, and, subsequently, the instantaneous airflow into the cylinder. The IAS exists as just one of many devices that the PCRL uses to control the dynamic boundary conditions of its SCE transient test system to make it “think” and operate as though it were part of a Multi-Cylinder Engine (MCE) test system. The model described in this paper will be used to design a second generation of this device that utilizes both continuously and discretely actuating valves working in parallel.
Journal Article

Simultaneous Measurements of In-Cylinder Temperature and Velocity Distribution in a Small-Bore Diesel Engine Using Thermographic Phosphors

2013-04-08
2013-01-0562
In-cylinder temperature and velocity fields were quantified simultaneously in an optically accessible, small-bore diesel engine. A technique utilizing luminescence from Pr:YAG phosphor particles aerosolized into the intake air was used for temperature determination while particle image velocimetry (PIV) on the aforementioned phosphor particles was used to simultaneously measure the velocity field. The temperature and velocity fields were measured at different points throughout the compression stroke up to −30 CAD. Systematic interference due to emission from the piston window reduced the accuracy of the measurements at crank angles closer to TDC. Single-shot simultaneous measurements of the temperature and velocity fields were made using both unheated and heated intake temperatures. In both cases, cycle-to-cycle variations in the temperature and velocity fields were visible.
Technical Paper

Modeling of Multicomponent Fuels Using Continuous Distributions with Application to Droplet Evaporation and Sprays

1997-10-01
972882
In multidimensional modeling, fuels have been represented predominantly by single components, such as octane for gasoline. Several bicomponent studies have been performed, but these are still limited in their ability to represent real fuels, which are blends of as many as 300 components. This study outlines a method by which the fuel composition is represented by a distribution function of the fuel molecular weight. This allows a much wider range of compositions to be modeled, and only requires including two additional “species” besides the fuel, namely the mean and second moment of the distribution. This approach has been previously presented but is applied here to multidimensional calculations. Results are presented for single component droplet vaporization for comparison with single component fuel predictions, as well as results for a multicomponent gasoline and a diesel droplet.
Technical Paper

Modeling Multiple Injection and EGR Effects on Diesel Engine Emissions

1997-10-01
972864
A modified version of the multi-dimensional KIVA-II code is used to model the effects of multiple injection schemes and exhaust gas recirculation (EGR) on direct injected diesel engine NOx and soot emissions. The computational results, which also considered double and triple injection schemes and varying EGR amounts, are compared with experimental data obtained from a single cylinder version of a Caterpillar heavy-duty truck engine. The study is done at high load (75% of peak torque at 1600 rpm) where EGR is known to produce unacceptable increases in soot (particulate). The effect of soot and spray model formulations are considered. This includes a new spray model based on Rayleigh-Taylor instabilities for liquid breakup. A soot oxidation model that accounts for turbulent mixing and kinetic effects were found to give accurate results. The results showed excellent agreement between predicted and measured in-cylinder pressure, and heat release data for the various cases.
Technical Paper

Direct Calibration of LIF Measurements of the Oil Film Thickness Using the Capacitance Technique

1997-10-01
972859
A direct calibration has been performed on laser-induced fluorescence measurements of the oil film in a single cylinder air-cooled research engine by simultaneously measuring the minimum oil film thickness by the capacitance technique. At the minimum oil film thickness the capacitance technique provides an accurate measure of the ring-wall distance, and this value is used as a reference for the photomultiplier voltage, giving a calibration coefficient. This calibration coefficient directly accounts for the effect of temperature on the fluorescent properties of the constituents of the oil which are photoactive. The inability to accurately know the temperature of the oil has limited the utility of off-engine calibration techniques. Data are presented for the engine under motoring conditions at speeds from 800 - 2400 rpm and under varying throttle positions.
Technical Paper

Initial Estimation of the Piston Ring Pack Contribution to Hydrocarbon Emissions from a Small Engine

2007-10-29
2007-01-4014
The contribution to the engine-out hydrocarbon (HC) emissions from fuel that escapes the main combustion event in piston ring crevices was estimated for an air-cooled, V-twin utility engine. The engine was run with a homogeneous pre-vaporized mixture system that avoids the presence of liquid films in the cylinder, and their resulting contribution to the HC emissions. A simplified ring pack gas flow model was used to estimate the ring pack contribution to HC emissions; the model was tested against the experimentally measured blowby. At high load conditions the model shows that the ring pack returns to the cylinder a mass of HC that exceeds that observed in the exhaust, and thus, is the dominant contributor to HC emissions. At light loads, however, the model predicts less HC mass returned from the ring pack than is observed in the exhaust. Time-resolved HC measurements were performed and used to assess the effect of combustion quality on HC emissions.
Technical Paper

Results of Plasma-Generated Hydrophilic and Antimicrobial Surfaces for Fluid Management Applications

2007-07-09
2007-01-3139
Humidity control within confined spaces is of great importance for existing NASA environmental control systems and Exploration applications. The Engineered Multifunction Surfaces (MFS) developed in this STTR Phase II form the foundation for a modular and scalable Distributed Humidity Control System (DHCS) while minimizing power, size and mass requirements. Key innovations of the MFS-based DHCS include passive humidity collection, control, and phase separation without moving parts, durable surface properties without particulate generation and accumulation, and the ability to scale up, or network in a distributed manner, a compact, modular device for Exploration applications including space suits, CEV, Rovers, Small and Transit Habitats and Large Habitats.
Technical Paper

Two-Color Imaging of In-Cylinder Soot Concentration and Temperature in a Heavy-Duty DI Diesel Engine with Comparison to Multidimensional Modeling for Single and Split Injections

1998-02-23
980524
Two-Color imaging optics were developed and used to observe soot emission processes in a modern heavy-duty diesel engine. The engine was equipped with a common rail, electronically-controlled, high-pressure fuel injection system that is capable of up to four injection pulses per engine cycle. The engine was instrumented with an endoscope system for optical access for the combustion visualization. Multidimensional combustion and soot modeling results were used for comparisons to enhance the understanding and interpretation of the experimental data. Good agreement between computed and measured cylinder pressures, heat release and soot and NOx emissions was achieved. In addition, good qualitative agreement was found between in-cylinder soot concentration (KL) and temperature fields obtained from the endoscope images and those obtained from the multidimensional modeling.
Technical Paper

Design of a Charge Regulating, Parallel Hybrid Electric FutureCar

1998-02-23
980488
Students, as members of Team Paradigm, at the University of Wisconsin-Madison have designed a charge regulating, parallel hybrid electric Dodge Intrepid for the 1997 FutureCar Challenge (FCC97). The goals for the Wisconsin “FutureCow” are to achieve an equivalent fuel consumption of 26 km/L (62 mpg) and Tier 2 Federal Emissions levels while maintaining the full passenger/cargo room, appearance, and feel of a stock Intrepid. These goals are realized through drivetrain simulations, a refined vehicle control strategy, decreased engine emissions, and aggressive weight reduction. The vehicle development has been coupled with 8,000 km of reliability and performance testing to ensure Wisconsin will be a strong competitor at the FCC97.
Technical Paper

Integration of Hybrid-Electric Strategy to Enhance Clean Snowmobile Performance

2006-11-13
2006-32-0048
The University of Wisconsin-Madison Snowmobile Team designed and constructed a hybrid-electric snowmobile for the 2005 Society of Automotive Engineers' Clean Snowmobile Challenge. Built on a 2003 cross-country touring chassis, this machine features a 784 cc fuel-injected four-stroke engine in parallel with a 48 V electric golf cart motor. The 12 kg electric motor increases powertrain torque up to 25% during acceleration and recharges the snowmobile's battery pack during steady-state operation. Air pollution from the gasoline engine is reduced to levels far below current best available technology in the snowmobile industry. The four-stroke engine's closed-loop EFI system maintains stoichiometric combustion while dual three-way catalysts reduce NOx, HC and CO emissions by up to 94% from stock. In addition to the use of three way catalysts, the fuel injection strategy has been modified to further reduce engine emissions from the levels measured in the CSC 2004 competition.
Technical Paper

Modeling Knock in Spark-Ignition Engines Using a G-equation Combustion Model Incorporating Detailed Chemical Kinetics

2007-04-16
2007-01-0165
In this paper, knock in a Ford single cylinder direct-injection spark-ignition (DISI) engine was modeled and investigated using the KIVA-3V code with a G-equation combustion model coupled with detailed chemical kinetics. The deflagrative turbulent flame propagation was described by the G-equation combustion model. A 22-species, 42-reaction iso-octane (iC8H18) mechanism was adopted to model the auto-ignition process of the gasoline/air/residual-gas mixture ahead of the flame front. The iso-octane mechanism was originally validated by ignition delay tests in a rapid compression machine. In this study, the mechanism was tested by comparing the simulated ignition delay time in a constant volume mesh with the values measured in a shock tube under different initial temperature, pressure and equivalence ratio conditions, and acceptable agreements were obtained.
X