Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

In-Cylinder Particulate Matter and Spray Imaging of Ethanol/Gasoline Blends in a Direct Injection Spark Ignition Engine

2013-04-08
2013-01-0259
A single-cylinder Direct Injection Spark Ignition (DISI) engine with optical access was used to investigate the effects of ethanol/gasoline blends on in-cylinder formation of particulate matter (PM) and fuel spray characteristics. Indolene was used as a baseline fuel and two blends of 50% and 85% ethanol (by volume, balance indolene) were investigated. Time resolved thermal radiation (incandescence/natural luminosity) of soot particles and fuel spray characteristics were recorded using a high speed camera. The images were analyzed to quantify soot formation in units of relative image intensity as a function of important engine operating conditions, including ethanol concentration in the fuel, fuel injection timing (250, 300 and 320° bTDC), and coolant temperature (25°C and 90°C). Spatially-integrated incandescence was used as a metric to quantify the level of in-cylinder PM formed at the different operating conditions.
Technical Paper

Correlation of Dominant Noise Transfer Paths in Statistical Energy Analysis Vehicle Model from Test as Basis for Variant Vehicle Development

2013-05-13
2013-01-1994
For purposes of reducing development time, cost and risk, the majority of new vehicles are derived strongly or at least generally from a surrogate vehicle, often of the same general size or body style. Previous test data and lessons learned can be applied as a starting point for design of the new vehicle, especially at early phases of the design before definite design decisions have been finalized and before prototype of production test hardware is available. This is true as well of vehicle NVH development where most new vehicles being developed are variants of existing vehicles for which the main noise transfer paths from sources of interest are already understood via test results and existing targets. The NVH targets for new vehicles are defined via benchmarking, market considerations, and other higher-level decisions. The objective is then to bridge the gap between test data from surrogate vehicles to direct support of the NVH development of new vehicle programs.
Journal Article

Review of Soot Deposition and Removal Mechanisms in EGR Coolers

2010-04-12
2010-01-1211
Exhaust gas recirculation (EGR) coolers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases in order to reduce NOX emissions. Engine coolant is used to cool EGR coolers. The presence of a cold surface in the cooler causes fouling due to particulate soot deposition, condensation of hydrocarbon, water and acid. Fouling experience results in cooler effectiveness loss and pressure drop. In this study, possible soot deposition mechanisms are discussed and their orders of magnitude are compared. Also, probable removal mechanisms of soot particles are studied by calculating the forces acting on a single particle attached to the wall or deposited layer. Our analysis shows that thermophoresis in the dominant mechanism for soot deposition in EGR coolers and high surface temperature and high kinetic energy of soot particles at the gas-deposit interface can be the critical factor in particles removal.
Technical Paper

Optimization of New Plastic Bracket NVH Characteristics using CAE

2012-10-02
2012-36-0195
NVH requirements are critical in new driveline developments. Failure modes due to resonances must be carefully analyzed and potential root causes must have adequate countermeasures. One of the most common root causes is the modal alignment. This work shows the steps to design and optimize a new plastic bracket for an automotive half shaft bearing. This bracket replaces a very stiff bracket, made of cast iron. The initial design of plastic bracket was not stiff enough to bring natural frequency of the system above engine second order excitation at maximum speed. The complete power pack was modeled and NVH CAE analysis was performed. The CAE outputs included Driving Point Response, Frequency Response Function and Modal analysis. The boundary conditions were discussed deep in detail to make sure the models represented actual system.
Technical Paper

Methodology for Developing and Validating Air Brake Tubes for Commercial Vehicles

2012-10-02
2012-36-0272
The pneumatic air brake system for heavy commercial trucks is composed by a large number of components, aiming its proper work and compliance with rigorous criteria of vehicular safety. One of those components, present along the whole vehicle, is the air brake tube, ducts which feed valves and reservoirs with compressed air, carrying signals for acting or releasing the brake system. In 2011, due to a lack of butadiene in a global scale, the manufacturing of these tubes was compromised; as this is an important raw material present on the polymer used so far, PA12. This article introduces the methodology of selecting, developing and validating in vehicle an alternative polymer for this application. For this purpose, acceptance criteria have been established through global material specifications, as well as bench tests and vehicular validation requirements.
Technical Paper

Validation of a Sparse Analytical Jacobian Chemistry Solver for Heavy-Duty Diesel Engine Simulations with Comprehensive Reaction Mechanisms

2012-09-24
2012-01-1974
The paper presents the development of a novel approach to the solution of detailed chemistry in internal combustion engine simulations, which relies on the analytical computation of the ordinary differential equations (ODE) system Jacobian matrix in sparse form. Arbitrary reaction behaviors in either Arrhenius, third-body or fall-off formulations can be considered, and thermodynamic gas-phase mixture properties are evaluated according to the well-established 7-coefficient JANAF polynomial form. The current work presents a full validation of the new chemistry solver when coupled to the KIVA-4 code, through modeling of a single cylinder Caterpillar 3401 heavy-duty engine, running in two-stage combustion mode.
Technical Paper

1.8L Sierra-Mondeo Turbo-Diesel Valvetrain Friction Reduction Using a Solid Film Lubricant

1994-10-01
941986
A 1.8L turbocharged diesel engine valvetrain friction was investigated, and the effectiveness of using a solid film lubricant (SFL) coating in reducing friction was determined throughout the operable speed range. This valvetrain design features direct acting mechanical bucket valve lifters. Camshaft journal bearing surfaces and all camshaft rubbing surfaces except lobe tips were coated. The direct acting bucket shims were etched with a cross hatch pattern to a depth sufficient to sustain a SFL film coating on the shim rubbing surfaces subjected to high surface loads. The SFL coated valvetrain torque was evaluated and compared with uncoated baseline torque. Coating the cam bearing journal surfaces alone with II-25D SFL reduced valvetrain friction losses 8 to 17% for 250 to 2000 rpm cam speed range (i.e. 500 - 4000 rpm engine speed). When bucket tappet and shims were also coated with the SFL, further significant reductions in coated valvetrain friction were observed.
Technical Paper

Diesel Fuel Delivery Module for Light Truck Applications

1993-11-01
932980
This paper reviews the design and development of a self-filling, in-tank fuel system reservoir intended for use in diesel engine vehicle applications. This new idea eliminates engine driveability concerns (stumbles, hesitations, stalling, etc.) associated with an inconsistent supply of fuel from the fuel tank to the engine, particularly during sudden vehicle maneuvers and with low fuel tank conditions.
Technical Paper

Ranking of Lubricants for Flexible Fuel Vehicles (FFV) by a Short Engine Sequence Test

1993-10-01
932790
A short engine sequence test, based on the Sequence VD procedure, was used to screen FFV oil candidates more rapidly. Since only one engine is needed to compare the wear-protection performance of several lubricants, engine hardware variability is not a significant issue in this test procedure. Several lubricants, some specially formulated for FFV engines, were tested using standard Sequence VD engine hardware which includes molybdenum top piston-rings. Results showed clear discrimination of the performance of oil candidates. These lubricants were also tested using an engine with chromium-faced top rings and exhibited similar performance ranking.
Technical Paper

Nozzle Effect on High Pressure Diesel Injection

1995-02-01
950083
Studies of transient diesel spray characteristics at high injection pressures were conducted in a constant volume chamber by utilizing a high speed photography and light extinction optical diagnostic technique. Two different types of nozzle hole entrances were investigated: a sharp-edged and a round-edged nozzle. The experimental results show that for the same injection delivery, the sharp-edged inlet injector needed a higher injection pressure to overcome the higher friction loss, but it produced longer spray tip penetration length, larger spray angle, smaller droplet sizes, and also lower particulate emission from a parallel engine test. For the round-edged and smooth edged tips at the same injection pressure, the sharp-edged inlet tip took a longer injection duration to deliver a fixed mass of fuel and produced larger overall average Sauter Mean Diameter (SMD) droplets.
Technical Paper

Scavenging of a Firing Two-Stroke Spark-Ignition Engine

1994-03-01
940393
Current demands for high fuel efficiency and low emissions in automotive powerplants have drawn attention to the two-stroke engine configuration. The present study measured trapping and scavenging efficiencies of a firing two-stroke spark-ignition engine by in-cylinder gas composition analysis. Intermediate results of the procedure included the trapped air-fuel ratio and residual exhaust gas fraction. Samples, acquired with a fast-acting electromagnetic valve installed in the cylinder head, were taken of the unburned mixture without fuel injection and of the burned gases prior to exhaust port opening, at engine speeds of 1000 to 3000 rpm and at 10 to 100% of full load. A semi-empirical, zero-dimensional scavenging model was developed based on modification of the non-isothermal, perfect-mixing model. Comparison to the experimental data shows good agreement.
Technical Paper

Modeling the Effects of Fuel Injection Characteristics on Diesel Engine Soot and NOx Emissions

1994-03-01
940523
The three-dimensional KIVA code has been used to study the effects of injection pressure and split injections on diesel engine performance and soot and NOx emissions. The code has been updated with state-of-the-art submodels including: a wave breakup atomization model, drop drag with drop distortion, spray/wall interaction with sliding, rebounding, and breaking-up drops, multistep kinetics ignition and laminar-turbulent characteristic time combustion, wall heat transfer with unsteadiness and compressibility, Zeldovich NOx formation, and soot formation with Nagle Strickland-Constable oxidation. The computational results are compared with experimental data from a single-cylinder Caterpillar research engine equipped with a high-pressure, electronically-controlled fuel injection system, a full-dilution tunnel for soot measurements, and gaseous emissions instrumentation.
Technical Paper

Determination of Dimensional Changes in Injection Molded Bosses Using Strain Gages: Effects on Joint Durability

1994-03-01
940653
Improvements in clamp load retention of fastened joints in instrument panels are desired by automotive OEMs to minimize warranty claims due to squeak and rattle problems. The decrease in torque retention of these plastic boss and metal fastener joints over time and temperature cycling was described in a previous SAE technical paper.1 This loss in clamp load retention (which is another measure of joint durability), as measured by torque, was shown to be affected by differences in the thermal expansion rates of the captured materials. The purpose of this paper is to further quantify these differences by using strain gages to measure the thermal expansion rates and dimensional changes of the joint's various components: metal fastener, molded plastic boss, and captured material.
Technical Paper

Effects of Injection Pressure and Nozzle Geometry on D.I. Diesel Emissions and Performance

1995-02-01
950604
An emissions and performance study was performed to show the effects of injection pressure, nozzle hole inlet condition (sharp and rounded edge) and nozzle included spray angle on particulate, NOx, and BSFC. The tests were conducted on a fully instrumented single-cylinder version of the Caterpillar 3406 heavy duty engine at 75% and 25% load at 1600 RPM. The fuel system consisted of an electronically controlled, hydraulically actuated, unit injector capable of injection pressures up to 160 MPa. Particulate versus NOx trade-off curves were generated for each case by varying the injection timing. The 75% load results showed the expected decrease in particulate and flattening of the trade-off curve with increased injection pressure. However, in going from 90 to 160 MPa, the timing had to be retarded to maintain the same NOx level, and this resulted in a 1 to 2% increase in BSFC. The rounded edged nozzles were found to have an increased discharge coefficient.
Technical Paper

In-Cylinder Diesel Flame Imaging Compared with Numerical Computations

1995-02-01
950455
An image acquisition-and-processing camera system was developed for in-cylinder diagnostics of a single-cylinder heavy duty diesel engine. The engine was equipped with an electronically-controlled common-rail fuel injection system that allowed both single and split (multiple) injections to be studied. The imaging system uses an endoscope to acquire luminous flame images from the combustion chamber and ensures minimum modification to the engine geometry. The system also includes an optical linkage, an image intensifier, a CID camera, a frame grabber, control circuitry and a computer. Experiments include both single and split injection cases at 90 MPa and 45 MPa injection pressures at 3/4 load and 1600 rev/min with simulated turbocharging. For the single injection at high injection pressure (90 MPa) the results show that the first luminous emissions from the ignition zone occur very close to the injector exit followed by rapid luminous flame spreading.
Technical Paper

Investigation of Diesel Sprays Using Diffraction-Based Droplet Sizing

1995-02-01
950458
The study of combustion in direct injection Diesel engines demands detailed understanding of the behavior of the injection. Understanding the injection involves characterizing the distribution of fuel particle sizes throughout the spray. This work studied the size distributions of sprays from commercial Diesel injectors under a series of conditions. A diffraction-based diagnostic obtained maps of local fuel droplet size information over the full spray field. Most quantitative techniques currently used in spray research provide quantitative time-ranging data at a single point in the spray field. Spatially resolved information proves more useful in studying transient sprays. The spatially resolved maps of particle size obtained in this experiment showed the reliability of the diagnostic, exhibited the transience of the fine structure of these sprays, and demonstrated the evolution of the sprays with time.
Technical Paper

A Simplified Approach to Quantifying Gear Rattle Noise Using Envelope Analysis

2011-05-17
2011-01-1584
The present work discusses an objective test and analysis method developed to quickly quantify steering gear rattle noise heard in a vehicle. Utilizing envelope analysis on the time history data of the rattle signal, the resulting method is simple, fast, practical and yields a single-valued metric which correlates well to subjective measures of rattle noise. In contrast to many other rattle analysis methods, the approach discussed here is completed in the time domain. As applied to rattle noise produced by automotive electric steering systems, the metric produced with this analysis method correlates well with subjective appraisals of vehicle-level rattle noise performance. Lastly, this method can also be extended to rattle measurements at the component and subcomponent level.
Technical Paper

Flow Noises Associated with Integrated Compressor Anti-Surge Valve

2011-05-17
2011-01-1532
Turbocharged gasoline engines are typically equipped with a compressor anti-surge valve or CBV (compressor by-pass valve). The purpose of this valve is to release pressurized air between the throttle and the compressor outlet during tip-out maneuvers. At normal operating conditions, the CBV is closed. There are two major CBV mounting configurations. One is to mount the CBV on the AIS system. The other is to mount the CBV directly on the compressor housing, which is called an integrated CBV. For an integrated CBV, at normal operating conditions, it is closed and the enclosed passageway between high pressure side and low pressure side forms a “side-branch” in the compressor inlet side (Figure 12). The cavity modes associated with this “side-branch” could be excited by shear layer flow and result in narrow band flow noises.
Journal Article

The Particle Emissions Characteristics of a Light Duty Diesel Engine with 10% Alternative Fuel Blends

2010-05-05
2010-01-1556
In this study, the particle emission characteristics of 10% alternative diesel fuel blends (Rapeseed Methyl Ester and Gas-to-Liquid) were investigated through the tests carried out on a light duty common-rail Euro 4 diesel engine. Under steady engine conditions, the study focused on particle number concentration and size distribution, to comply with the particle metrics of the European Emission Regulations (Regulation NO 715/2007, amended by 692/2008 and 595/2009). The non-volatile particle characteristics during the engine warming up were also investigated. They indicated that without any modification to the engine, adding selected alternative fuels, even at a low percentage, can result in a noticeable reduction of the total particle numbers; however, the number of nucleation mode particles can increase in certain cases.
X