Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Characteristics of Vaporizing Continuous Multi-Component Fuel Sprays in a Port Fuel Injection Gasoline Engine

2001-03-05
2001-01-1231
Vaporization models for continuous multi-component liquid sprays and liquid wall films are presented using a continuous thermodynamics formulation. The models were implemented in the KIVA3V-Release 2.0 code. The models are first applied to clarify the characteristics of vaporizing continuous multi-component liquid wall films and liquid drops, and then applied to numerically analyze a practical continuous multi-component fuel - gasoline behavior in a 4-valve port fuel injection (PFI) gasoline engine under warm conditions. Corresponding computations with single-component fuels are also performed and presented for comparison purposes. As compared to the results of its single-component counterpart, the vaporizing continuous multi-component fuel drop displays a larger vaporization rate initially and a smaller vaporization rate as it becomes more and more dominated by heavy species.
Technical Paper

Modeling of NOx Emissions with Comparison to Exhaust Measurements for a Gas Fuel Converted Heavy-Duty Diesel Engine

1996-10-01
961967
In previous work the KIVA-II code has been modified to model modem DI diesel engines and their emissions of particulate soot and oxides of nitrogen (NOx). This work presents results from a program to further validate the NOx emissions models against engine experiments with a well characterized modern engine. To facilitate a simplified comparison with experiments, a single cylinder research version of the Caterpillar 3406 heavy duty DI diesel engine was retrofitted to run as a naturally-aspirated, propane-fueled, spark-ignited engine. The retrofit includes installing a low compression ratio piston with bowl, adding a gas mixer, replacing the fuel injector assembly with a spark plug assembly and adding spark and fuel stoichiometry control hardware. Cylinder pressure and engine-out NOx emissions were measured for a range of speeds, exhaust gas residual (EGR) fractions, and spark timing settings.
Technical Paper

Engine Knock Toughness Improvement Through Water Jacket Optimization

2003-10-27
2003-01-3259
Improvement of engine cycle thermal efficiency is an effective way to increase engine torque and to reduce fuel consumption simultaneously. However, the extent of the improvement is limited by engine knock, which is more evident at low engine speeds when combustion flame propagation is relatively slow. To prevent engine damage due to knock, the spark ignition timing of a gasoline engine is usually controlled by a knock sensor. Therefore, an engine's ignition timing cannot be set freely to achieve best engine performance and fuel economy. Whether ignition timings for a multi-cylinder engine are the same or can be set differently for each cylinder, it is not desirable for each cylinder has big deviation from the median with respect to knock tendency. It is apparent that effective measures to improve engine knock toughness should address both uniformity of all cylinders of a multi-cylinder engine and improvement of median knock toughness.
X