Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Detailed Diesel Exhaust Particulate Characterization and Real-Time DPF Filtration Efficiency Measurements During PM Filling Process

2007-04-16
2007-01-0320
An experimental study was performed to investigate diesel particulate filter (DPF) performance during filtration with the use of real-time measurement equipment. Three operating conditions of a single-cylinder 2.3-liter D.I. heavy-duty diesel engine were selected to generate distinct types of diesel particulate matter (PM) in terms of chemical composition, concentration, and size distribution. Four substrates, with a range of geometric and physical parameters, were studied to observe the effect on filtration characteristics. Real-time filtration performance indicators such as pressure drop and filtration efficiency were investigated using real-time PM size distribution and a mass analyzer. Types of filtration efficiency included: mass-based, number-based, and fractional (based on particle diameter). In addition, time integrated measurements were taken with a Rupprecht & Patashnick Tapered Element Oscillating Microbalance (TEOM), Teflon and quartz filters.
Technical Paper

Detailed Diesel Exhaust Particulate Characterization and DPF Regeneration Behavior Measurements for Two Different Regeneration Systems

2007-04-16
2007-01-1063
Three distinct types of diesel particulate matter (PM) are generated in selected engine operating conditions of a single-cylinder heavy-duty diesel engine. The three types of PM are trapped using typical Cordierite diesel particulate filters (DPF) with different washcoat formulations and a commercial Silicon-Carbide DPF. Two systems, an external electric furnace and an in-situ burner, were used for regeneration. Furnace regeneration experiments allow the collected PM to be classified into two categories depending on oxidation mechanism: PM that is affected by the catalyst and PM that is oxidized by a purely thermal mechanism. The two PM categories prove to contribute differently to pressure drop and transient filtration efficiency during in-situ regeneration.
Technical Paper

Pre-Ignition Phenomena of Methanol Fuel (M85) by the Post-Ignition Technique

1989-09-01
892061
Pre-ignition phenomena of methanol fuel (M85) and unleaded premium gasoline were studied with use of the post-ignition technique. The combustion pressure as well as a signal from the pre-ignition detector were analyzed. It was found that methanol fuel is more susceptible to pre-ignition compared to gasoline fuel. Large cycle-by-cycle variations are present with combustion by surface ignition at the time of pre-ignition. This was caused by wide variations in the 0% mass fraction burned point. Since ionization signals from the pre-ignition detector prior to spark ignition indicate the 0% mass fraction burned point by surface ignition, prediction of pre-ignition is possible with use of the post-ignition technique. Platinum tipped spark plugs were found to be highly susceptible to pre-ignition with methanol fuel.
X