Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-06-18
The development of PM and NOx reduction system with the combination of DOC included DPF and SCR catalyst in addition to the AOC sub-assembly for NH3 slip protection is described. DPF regeneration strategy and manual regeneration functionality are introduced with using ITH, HCI device on the EUI based EGR, VGT 12.3L diesel engine at the CVS full dilution tunnel test bench. With this system, PM and NOx emission regulation for JPNL was satisfied and DPF regeneration process under steady state condition and transient condition (JE05 mode) were successfully fulfilled. Manual regeneration process was also confirmed and HCI control strategy was validated against the heat loss during transient regeneration mode. Presenter Seung-il Moon
Journal Article

Effect of Mesh Structure in the KIVA-4 Code with a Less Mesh Dependent Spray Model for DI Diesel Engine Simulations

2009-06-15
2009-01-1937
Two different types of mesh used for diesel combustion with the KIVA-4 code are compared. One is a well established conventional KIVA-3 type polar mesh. The other is a non-polar mesh with uniform size throughout the piston bowl so as to reduce the number of cells and to improve the quality of the cell shapes around the cylinder axis which can contain many fuel droplets that affect prediction accuracy and the computational time. This mesh is specialized for the KIVA-4 code which employs an unstructured mesh. To prevent dramatic changes in spray penetration caused by the difference in cell size between the two types of mesh, a recently developed spray model which reduces mesh dependency of the droplet behavior has been implemented. For the ignition and combustion models, the Shell model and characteristic time combustion (CTC) model are employed.
Journal Article

Use of Low-Pressure Direct-Injection for Reactivity Controlled Compression Ignition (RCCI) Light-Duty Engine Operation

2013-04-08
2013-01-1605
Reactivity-controlled compression ignition (RCCI) has been shown to be capable of providing improved engine efficiencies coupled with the benefit of low emissions via in-cylinder fuel blending. Much of the previous body of work has studied the benefits of RCCI operation using high injection pressures (e.g., 500 bar or greater) with common rail injection (CRI) hardware. However, low-pressure fueling technology is capable of providing significant cost savings. Due to the broad market adoption of gasoline direct injection (GDI) fueling systems, a market-type prototype GDI injector was selected for this study. Single-cylinder light-duty engine experiments were undertaken to examine the performance and emissions characteristics of the RCCI combustion strategy with low-pressure GDI technology and compared against high injection pressure RCCI operation. Gasoline and diesel were used as the low-reactivity and high-reactivity fuels, respectively.
Technical Paper

An Analytical Energy-budget Model for Diesel Droplet Impingement on an Inclined Solid Wall

2020-04-14
2020-01-1158
The study of spray-wall interaction is of great importance to understand the dynamics that occur during fuel impingement onto the chamber wall or piston surfaces in internal combustion engines. It is found that the maximum spreading length of an impinged droplet can provide a quantitative estimation of heat transfer and energy transformation for spray-wall interaction. Furthermore, it influences the air-fuel mixing and hydrocarbon and particle emissions at combusting conditions. In this paper, an analytical model of a single diesel droplet impinging on the wall with different inclined angles (α) is developed in terms of βm (dimensionless maximum spreading length, the ratio of maximum spreading length to initial droplet diameter) to understand the detailed impinging dynamic process.
Journal Article

An Efficient Level-Set Flame Propagation Model for Hybrid Unstructured Grids Using the G-Equation

2016-04-05
2016-01-0582
Computational fluid dynamics of gas-fueled large-bore spark ignition engines with pre-chamber ignition can speed up the design process of these engines provided that 1) the reliability of the results is not affected by poor meshing and 2) the time cost of the meshing process does not negatively compensate for the advantages of running a computer simulation. In this work a flame propagation model that runs with arbitrary hybrid meshes was developed and coupled with the KIVA4-MHI CFD solver, in order to address these aims. The solver follows the G-Equation level-set method for turbulent flame propagation by Tan and Reitz, and employs improved numerics to handle meshes featuring different cell types such as hexahedra, tetrahedra, square pyramids and triangular prisms. Detailed reaction kinetics from the SpeedCHEM solver are used to compute the non-equilibrium composition evolution downstream and upstream of the flame surface, where chemical equilibrium is instead assumed.
Technical Paper

Experimental Investigation of the Compression Ignition Process of High Reactivity Gasoline Fuels and E10 Certification Gasoline using a High-Pressure Direct Injection Gasoline Injector

2020-04-14
2020-01-0323
Gasoline compression ignition (GCI) technology shows the potential to obtain high thermal efficiencies while maintaining low soot and NOx emissions in light-duty engine applications. Recent experimental studies and numerical simulations have indicated that high reactivity gasoline-like fuels can further enable the benefits of GCI combustion. However, there is limited empirical data in the literature studying the gasoline compression ignition process at relevant in-cylinder conditions, which are required for further optimizing combustion system designs. This study investigates the temporal and spatial evolution of the compression ignition process of various high reactivity gasoline fuels with research octane numbers (RON) of 71, 74 and 82, as well as a conventional RON 97 E10 gasoline fuel. A ten-hole prototype gasoline injector specifically designed for GCI applications capable of injection pressures up to 450 bar was used.
Technical Paper

Alleviating the Magnetic Effects on Magnetometers Using Vehicle Kinematics for Yaw Estimation for Autonomous Ground Vehicles

2020-04-14
2020-01-1025
Autonomous vehicle operation is dependent upon accurate position estimation and thus a major concern of implementing the autonomous navigation is obtaining robust and accurate data from sensors. This is especially true, in case of Inertial Measurement Unit (IMU) sensor data. The IMU consists of a 3-axis gyro, 3-axis accelerometer, and 3-axis magnetometer. The IMU provides vehicle orientation in 3D space in terms of yaw, roll and pitch. Out of which, yaw is a major parameter to control the ground vehicle’s lateral position during navigation. The accelerometer is responsible for attitude (roll-pitch) estimates and magnetometer is responsible for yaw estimates. However, the magnetometer is prone to environmental magnetic disturbances which induce errors in the measurement.
Journal Article

Ionization Signal Response during Combustion Knock and Comparison to Cylinder Pressure for SI Engines

2008-04-14
2008-01-0981
In-cylinder ion sensing is a subject of interest due to its application in spark-ignited (SI) engines for feedback control and diagnostics including: combustion knock detection, rate and phasing of combustion, and mis-fire On Board Diagnostics (OBD). Further advancement and application is likely to continue as the result of the availability of ignition coils with integrated ion sensing circuitry making ion sensing more versatile and cost effective. In SI engines, combustion knock is controlled through closed loop feedback from sensor metrics to maintain knock near the borderline, below engine damage and NVH thresholds. Combustion knock is one of the critical applications for ion sensing in SI engines and improvement in knock detection offers the potential for increased thermal efficiency. This work analyzes and characterizes the ionization signal in reference to the cylinder pressure signal under knocking and non-knocking conditions.
Journal Article

Ring Pack Crevice Effects on the Hydrocarbon Emissions from an Air-Cooled Utility Engine

2008-09-09
2008-32-0004
The effect of the ring pack storage mechanism on the hydrocarbon (HC) emissions from an air-cooled utility engine has been studied using a simplified ring pack model. Tests were performed for a range of engine load, two engine speeds, varied air-fuel ratio and with a fixed ignition timing using a homogeneous, pre-vaporized fuel mixture system. The integrated mass of HC leaving the crevices from the end of combustion (the crank angle that the cumulative burn fraction reached 90%) to exhaust valve closing was taken to represent the potential contribution of the ring pack to the overall HC emissions; post-oxidation in the cylinder will consume some of this mass. Time-resolved exhaust HC concentration measurements were also performed, and the instantaneous exhaust HC mass flow rate was determined using the measured exhaust and cylinder pressure.
Journal Article

A Transport Equation Residual Model Incorporating Refined G-Equation and Detailed Chemical Kinetics Combustion Models

2008-10-06
2008-01-2391
A transport equation residual model incorporating refined G-equation and detailed chemical kinetics combustion models has been developed and implemented in the ERC KIVA-3V release2 code for Gasoline Direct Injection (GDI) engine simulations for better predictions of flame propagation. In the transport equation residual model a fictitious species concept is introduced to account for the residual gases in the cylinder, which have a great effect on the laminar flame speed. The residual gases include CO2, H2O and N2 remaining from the previous engine cycle or introduced using EGR. This pseudo species is described by a transport equation. The transport equation residual model differentiates between CO2 and H2O from the previous engine cycle or EGR and that which is from the combustion products of the current engine cycle.
Journal Article

Signal Processing Parameters for Estimation of the Diesel Engine Combustion Signature

2011-05-17
2011-01-1649
Research into the estimation of diesel engine combustion metrics via non-intrusive means, typically referred to as “remote combustion sensing” has become an increasingly active area of combustion research. Success in accurately estimating combustion metrics with low-cost non-intrusive transducers has been proven and documented by multiple sources on small scale diesel engines (2-4 cylinders, maximum outputs of 67 Kw, 210 N-m). This paper investigates the application of remote combustion sensing technology to a larger displacement inline 6-cylinder diesel with substantially higher power output (280 kW, 1645 N-m) than previously explored. An in-depth frequency analysis has been performed with the goal of optimizing the estimated combustion signature which has been computed based upon the direct relationship between the combustion event measured via a pressure transducer, and block vibration measured via accelerometers.
Journal Article

Replicating Instantaneous Cylinder Mass Flow Rate with Parallel Continuously and Discretely Actuating Intake Plenum Valves

2012-04-16
2012-01-0417
The focus of this paper is to discuss the modeling and control of intake plenum pressure on the Powertrain Control Research Laboratory's (PCRL) Single-Cylinder Engine (SCE) transient test system using a patented device known as the Intake Air Simulator (IAS), which dynamically controls the intake plenum pressure, and, subsequently, the instantaneous airflow into the cylinder. The IAS exists as just one of many devices that the PCRL uses to control the dynamic boundary conditions of its SCE transient test system to make it “think” and operate as though it were part of a Multi-Cylinder Engine (MCE) test system. The model described in this paper will be used to design a second generation of this device that utilizes both continuously and discretely actuating valves working in parallel.
Journal Article

Simultaneous Measurements of In-Cylinder Temperature and Velocity Distribution in a Small-Bore Diesel Engine Using Thermographic Phosphors

2013-04-08
2013-01-0562
In-cylinder temperature and velocity fields were quantified simultaneously in an optically accessible, small-bore diesel engine. A technique utilizing luminescence from Pr:YAG phosphor particles aerosolized into the intake air was used for temperature determination while particle image velocimetry (PIV) on the aforementioned phosphor particles was used to simultaneously measure the velocity field. The temperature and velocity fields were measured at different points throughout the compression stroke up to −30 CAD. Systematic interference due to emission from the piston window reduced the accuracy of the measurements at crank angles closer to TDC. Single-shot simultaneous measurements of the temperature and velocity fields were made using both unheated and heated intake temperatures. In both cases, cycle-to-cycle variations in the temperature and velocity fields were visible.
Journal Article

Study of Basic Injection Configurations using a Direct-Injection Hydrogen Research Engine

2009-04-20
2009-01-1418
The application of hydrogen (H2) as an internal combustion (IC) engine fuel has been under investigation for several decades. The favorable physical properties of hydrogen make it an excellent alternative fuel for fuel cells as well as IC engines and hence it is widely regarded as the energy carrier of the future. The potential of hydrogen as an IC engine fuel can be optimized by direct injection (DI) as it provides multiple degrees of freedom to influence the in-cylinder combustion processes and consequently the engine efficiency and exhaust emissions. This paper studies a single-hole nozzle and examines the effects of injection strategy on engine efficiency, combustion behavior and NOx emissions. The experiments for this study are done on a 0.5 liter single-cylinder research engine which is specifically designed for combustion studies and equipped with a cylinder head that allows side as well as central injector location.
Journal Article

Divided Exhaust Period Implementation in a Light-Duty Turbocharged Dual-Fuel RCCI Engine for Improved Fuel Economy and Aftertreatment Thermal Management: A Simulation Study

2018-04-03
2018-01-0256
Although turbocharging can extend the high load limit of low temperature combustion (LTC) strategies such as reactivity controlled compression ignition (RCCI), the low exhaust enthalpy prevalent in these strategies necessitates the use of high exhaust pressures for improving turbocharger efficiency, causing high pumping losses and poor fuel economy. To mitigate these pumping losses, the divided exhaust period (DEP) concept is proposed. In this concept, the exhaust gas is directed to two separate manifolds: the blowdown manifold which is connected to the turbocharger and the scavenging manifold that bypasses the turbocharger. By separately actuating the exhaust valves using variable valve actuation, the exhaust flow is split between two manifolds, thereby reducing the overall engine backpressure and lowering pumping losses. In this paper, results from zero-dimensional and one-dimensional simulations of a multicylinder RCCI light-duty engine equipped with DEP are presented.
Technical Paper

Characterizing the Effect of Automotive Torque Converter Design Parameters on the Onset of Cavitation at Stall

2007-05-15
2007-01-2231
This paper details a study of the effects of multiple torque converter design and operating point parameters on the resistance of the converter to cavitation during vehicle launch. The onset of cavitation is determined by an identifiable change in the noise radiating from the converter during operation, when the collapse of cavitation bubbles becomes detectable by nearfield acoustical measurement instrumentation. An automated torque converter dynamometer test cell was developed to perform these studies, and special converter test fixturing is utilized to isolate the test unit from outside disturbances. A standard speed sweep test schedule is utilized, and an analytical technique for identifying the onset of cavitation from acoustical measurement is derived. Effects of torque converter diameter, torus dimensions, and pump and stator blade designs are determined.
Technical Paper

Application of Signature Analysis and Operating Deflection Shapes to Identify Interior Noise Sources in an Excavator

2007-05-15
2007-01-2427
The objective of this study was to identify and gain an understanding of the origins of noise in a commercial excavator cab. This paper presents the results of two different tests that were used to characterize the vibration and acoustic characteristics of the excavator cab. The first test was done in an effort to characterize the vibration properties of the cab panels and their associated contribution to the noise level inside the cab. The second set, of tests, was designed to address the contribution of the external airborne noise produced by the engine and hydraulic pump to the overall interior noise. This paper describes the test procedures used to obtain the data for the signature analysis, operational deflection shapes (ODS), and sound diagnosis analysis. It also contains a discussion of the analysis results and an inside look into the possible contributors of key frequencies to the interior noise in the excavator cab.
Technical Paper

Development and Validation of an Acoustic Encapsulation to Reduce Diesel Engine Noise

2007-05-15
2007-01-2375
This paper describes a study to demonstrate the feasibility of developing an acoustic encapsulation to reduce airborne noise from a commercial diesel engine. First, the various sources of noise from the engine were identified using Nearfield Acoustical Holography (NAH). Detailed NAH measurements were conducted on the four sides of the engine in an engine test cell. The main sources of noise from the engine were ranked and identified within the frequency ranges of interest. Experimental modal analysis was conducted on the oil pan and front cover plate of the engine to reveal correlations of structural vibration results with the data from the NAH. The second phase of the study involved the design and fabrication of the acoustical encapsulation (noise covers) for the engine in a test cell to satisfy the requirements of space, cost and performance constraints. The acoustical materials for the enclosure were selected to meet the frequency and temperature ranges of interest.
Technical Paper

Direct Calibration of LIF Measurements of the Oil Film Thickness Using the Capacitance Technique

1997-10-01
972859
A direct calibration has been performed on laser-induced fluorescence measurements of the oil film in a single cylinder air-cooled research engine by simultaneously measuring the minimum oil film thickness by the capacitance technique. At the minimum oil film thickness the capacitance technique provides an accurate measure of the ring-wall distance, and this value is used as a reference for the photomultiplier voltage, giving a calibration coefficient. This calibration coefficient directly accounts for the effect of temperature on the fluorescent properties of the constituents of the oil which are photoactive. The inability to accurately know the temperature of the oil has limited the utility of off-engine calibration techniques. Data are presented for the engine under motoring conditions at speeds from 800 - 2400 rpm and under varying throttle positions.
Technical Paper

Initial Estimation of the Piston Ring Pack Contribution to Hydrocarbon Emissions from a Small Engine

2007-10-29
2007-01-4014
The contribution to the engine-out hydrocarbon (HC) emissions from fuel that escapes the main combustion event in piston ring crevices was estimated for an air-cooled, V-twin utility engine. The engine was run with a homogeneous pre-vaporized mixture system that avoids the presence of liquid films in the cylinder, and their resulting contribution to the HC emissions. A simplified ring pack gas flow model was used to estimate the ring pack contribution to HC emissions; the model was tested against the experimentally measured blowby. At high load conditions the model shows that the ring pack returns to the cylinder a mass of HC that exceeds that observed in the exhaust, and thus, is the dominant contributor to HC emissions. At light loads, however, the model predicts less HC mass returned from the ring pack than is observed in the exhaust. Time-resolved HC measurements were performed and used to assess the effect of combustion quality on HC emissions.
X